Computer Chess Club Archives


Search

Terms

Messages

Subject: Re: If there existe some simple formula for ideal branching factor?

Author: Bert van den Akker

Date: 12:11:27 10/25/00

Go up one level in this thread


Here I give some theoreticaly numbers.

Branche factor = (number of nodes visited for depth d ) / (number of nodes
visited for depth d-1)

With depth d  I mean a search of d ply.

Here are the formulas for perfect ordered search trees:

v = number of moves from each node (number of moves possible fro a position in
the search tree)

d = search depth


for d is odd

minimum end nodes visited  = v^((d+1)/2) + v^((d-1)/2) - 1


for d is even

minimum end nodes visited = 2 * v^(d/2) - 1

These formulas come from Donald Knuth



With v = 4 and d = 1
minimum end nodes visited = 4

With v = 4 and d = 2
minimum end nodes visited = 7
etc.

The maximum end nodes visited = v^d

The following calculations gives the minimum branching factor for brute force
searching:

Remember that in a search tree for chess of course v is not a constant factor so
the
numbers will be only an indication what you can expact:

Hash tables and nullmove cutoff will have a lot of infuence on the branching
factor because they cut
large parts of the search tree.

A program with hash tables and null moves can be up to 50 times faster!!!!

v = 4

 1 =  4
 2 =  7
 3 =  19
 4 =  31
 5 =  79
 6 =  127
 7 =  319
 8 =  511
 9 =  1279
 10 =  2047
 11 =  5119
 12 =  8191
 13 =  20479
 14 =  32767
 15 =  81919
 16 =  131071
 17 =  327679
 18 =  524287
 19 =  1310719
 20 =  2097151


 1 =  4
 2 =  11
 3 =  30
 4 =  61
 5 =  140
 6 =  267
 7 =  586
 8 =  1097
 9 =  2376
 10 =  4423
 11 =  9542
 12 =  17733
 13 =  38212
 14 =  70979
 15 =  152898
 16 =  283969
 17 =  611648
 18 =  1135935
 19 =  2446654
 20 =  4543805

Branching factors
 2 =  2.75
 3 =  2.72727272727273
 4 =  2.03333333333333
 5 =  2.29508196721311
 6 =  1.90714285714286
 7 =  2.19475655430712
 8 =  1.87201365187713
 9 =  2.16590701914312
 10 =  1.86153198653199
 11 =  2.15735925842189
 12 =  1.85841542653532
 13 =  2.15485253482208
 14 =  1.85750549565582
 15 =  2.15413009481678
 16 =  1.85724469908043
 17 =  2.15392525240431
 18 =  1.85717111802867
 19 =  2.15386795899413
 20 =  1.85715062285064


v = 36

 1 =  36
 2 =  71
 3 =  1331
 4 =  2591
 5 =  47951
 6 =  93311
 7 =  1726271
 8 =  3359231
 9 =  62145791
 10 =  120932351
 11 =  2237248511
 12 =  4353564671
 13 =  80540946431
 14 =  156728328191
 15 =  2899474071551
 16 =  5642219814911
 17 =  104381066575871
 18 =  203119913336831
 19 =  3.75771839673139E+15
 20 =  7.31231688012595E+15


 1 =  36
 2 =  107
 3 =  1438
 4 =  4029
 5 =  51980
 6 =  145291
 7 =  1871562
 8 =  5230793
 9 =  67376584
 10 =  188308935
 11 =  2425557446
 12 =  6779122117
 13 =  87320068548
 14 =  244048396739
 15 =  3143522468290
 16 =  8785742283201
 17 =  113166808859072
 18 =  316286722195903
 19 =  4.07400511892729E+15
 20 =  1.13863219990532E+16



Branching factors
 2 =  2.97222222222222
 3 =  13.4392523364486
 4 =  2.80180806675939
 5 =  12.9014643832216
 6 =  2.79513274336283
 7 =  12.8814723554797
 8 =  2.79488096039565
 9 =  12.8807589977275
 10 =  2.79487210274715
 11 =  12.8807347670465
 12 =  2.79487180490385
 13 =  12.8807339712951
 14 =  2.79487179519157
 15 =  12.8807339457832
 16 =  2.79487179488182
 17 =  12.8807339449799
 18 =  2.79487179487211
 19 =  12.8807339449549
 20 =  2.7948717948718


BvdA



This page took 0 seconds to execute

Last modified: Thu, 15 Apr 21 08:11:13 -0700

Current Computer Chess Club Forums at Talkchess. This site by Sean Mintz.