Author: Robert Hyatt
Date: 09:39:59 05/31/98
Go up one level in this thread
On May 31, 1998 at 11:45:02, Georg Langrath wrote: >q5k1/4Q3/5r2/5P1B/6PK/8/8/8 w > >This earlier showed "draw-position " should be suitable to proof >hashtables in Fritz5, I thought. The resullt was illogical and >difficult to understand for me. I have Pentium 133 and 32 MB memory . I >noticed the time when the computer understood that the position is draw. >When I repeat it, I got the same result. Has my Fritz tasted alcohol? > >Hashmemory Time > >16448 46s >14400 11s (!) >13376 1m 58s >12352 49s >11328 50s Here Hashmemory is "Full" first time. >10304 14s (!) >9280 1 m 55s >8250 1m 7s >7232 26s (!) >6208 14s (!) >5184 45s >4160 16s (!) >3136 11s (!) >2112 1m 11s >1088 5m 51s >64 >10 minutes > this has been explained many times, and is based on random chance. Positions get overwritten or not overwritten based on the random values used to produce the hash signature, and the size of the hash table. Often, overwriting something will speed the search up, but equally as often, overwriting something will slow it down. It is not a phenomenon that lends itself to precise measurement, because of the randomness of the hash signature. But it is simply a fact of life in computer chess or any other place where randomness is used... >Georg
This page took 0 seconds to execute
Last modified: Thu, 15 Apr 21 08:11:13 -0700
Current Computer Chess Club Forums at Talkchess. This site by Sean Mintz.