Author: Vincent Diepeveen
Date: 12:47:32 11/30/01
Go up one level in this thread
On November 30, 2001 at 14:49:45, Uri Blass wrote: my opinion is that black wins anyway against computer here knowing black is GM. > >[D]rr6/q2kbp2/bnp1p2p/pp1pP1pP/2nP2P1/P1P2N2/NP3P2/1KBRQB1R w - - 0 25 > >Junior played Ka1 and lost > >here is yace(only material version) logfile for that position(it was slowed down >by a big factor in the first seconds so the times are not important) > >It was using the following material values: >pawn:0.8,knight 3.4 bishop 3.5,rook 5,queen 10.01 > >I prefer 1,3,5,9 but the values are the values from the version that I got from >the programmer > > >You can see that b4 has a stable score at deothes 16,17 of 0.1 pawns that means >an advantage of only bishop for a knight >After Ka1 white is losing a pawn > >You can also see that Junior7 also likes Ka1 after few minutes. > >I believe that b4 could at least give Junior better practical chances to save >the game against piket. > >I also believe that computers can practically by good defence win games or at >least draw against king attacks of humans when the hardware gets faster > >Even if the computer gets into a bad position humans are going to have big >problems to find the right moves against correct defence > >What is your opinion? > > > >1 -10 0 9 Bxc4 dxc4 >1 0 0 26 Rh2 >1 0 0 52 Rh2 >2 0 0 110 Rh2 Bd8 >2 0 0 490 Rh2 Bd8 >3 0 0 1034 Rh2 Bd8 Be2 >3 0 0 1399 Rh2 Bd8 Be2 >4 0 1 4474 Rh2 a4 Be2 Bc8 >4 0 1 5215 Rh2 a4 Be2 Bc8 >5 0 1 7376 Rh2 a4 Be2 Bc8 Nb4 >5 0 2 9353 Rh2 a4 Be2 Bc8 Nb4 >6 0 3 14876 Rh2 a4 Be2 Bc8 Nb4 Bd8 >6 0 5 27183 Rh2 a4 Be2 Bc8 Nb4 Bd8 >7 0 11 51383 Rh2 a4 Be2 Bc8 Nb4 Bd8 Bf1 >7 0 21 102385 Rh2 a4 Be2 Bc8 Nb4 Bd8 Bf1 >8 0 30 151619 Rh2 a4 Be2 Bc8 Nb4 Bd8 Bf1 Kc7 >8 0 40 209631 Rh2 a4 Be2 Bc8 Nb4 Bd8 Bf1 Kc7 >9 0 65 349837 Rh2 a4 Be2 Bc8 Nb4 Bd8 Bf1 Kc7 Kc2 >9 0 92 511066 Rh2 a4 Be2 Bc8 Nb4 Bd8 Bf1 Kc7 Kc2 >10 0 153 850827 Rh2 a4 Be2 Bc8 Nb4 Bd8 Bf1 Kc7 Kc2 Kd7 >10 0 236 1303073 Rh2 a4 Be2 Bc8 Nb4 Bd8 Bf1 Kc7 Kc2 Kd7 >11 -10 1130 5792693 Rh2 b4 cxb4 axb4 axb4 Nxb2 Bxb2 Bxf1 Nc1 Bb5 Ng1 Nc4 Bc3 >11 -9 2872 14360047 Nh2 b4 Bxc4 dxc4 cxb4 axb4 Nxb4 Nd5 Nxa6 Bb4 >11 0 3025 15112569 Nh2 b4 Bxc4 Nxc4 axb4 axb4 Nxb4 Bxb4 cxb4 Qb6 Kc2 Qxb4 Qxb4 >11 0 3109 15548288 Nh2 b4 Bxc4 Nxc4 axb4 axb4 Nxb4 Bxb4 cxb4 Qb6 Kc2 Qxb4 Qxb4 >12 -40 4323 21626223 Nh2 b4 Bxc4 Bxc4 cxb4 Bxa2+ Kxa2 axb4 Qe3 bxa3 Rd3 axb2+ >Ra3 bxc1=Q Rxc1 >12 -80 4888 24284143 Nh2 b4 Bxc4 Bxc4 cxb4 Bxa2+ Kxa2 axb4 Qe3 bxa3 bxa3 Nc4 Qf3 >Bxa3 Bxa3 >12 -79 7078 35717308 Bxc4 dxc4 >12 -10 8324 42177363 Bxc4 dxc4 Kc2 Nc8 b4 cxb3+ Kxb3 Kc7 Nd2 Qb6 Kc2 a4 Nb4 Bb7 >12 -9 9518 48227197 Rh3 b4 Bxc4 Nxc4 axb4 axb4 Nxb4 Bb5 >12 0 10054 50889084 Rh3 b4 Bxc4 Nxc4 axb4 axb4 Nxb4 Bxb4 cxb4 Qb6 Kc2 Qxb4 Qxb4 >Rxb4 >12 0 10276 52030053 Rh3 b4 Bxc4 Nxc4 axb4 axb4 Nxb4 Bxb4 cxb4 Qb6 Kc2 Qxb4 Qxb4 >Rxb4 >13 -40 14023 70811643 Rh3 b4 Bxc4 Nxc4 axb4 axb4 Nxb4 Bxb4 cxb4 Bb5 Kc2 Qa2 Be3 >Nxe3+ Kc3 >13 -80 22222 108322149 Rh3 b4 cxb4 axb4 Nxb4 Nxa3+ bxa3 Bxb4 Nd2 Bxf1 Qxf1 Bxa3 >Bxa3 Nc4+ Kc2 Nxa3+ Kd3 >13 -79 24090 117377533 Bxc4 dxc4 >13 -10 28254 138402679 Bxc4 dxc4 Kc2 Nc8 b4 cxb3+ Kxb3 Kc7 Nd2 Qb6 Kc2 a4 Nb4 >Bb7 Bb2 f5 >13 -9 49364 243829428 Rd3 Nxa3+ bxa3 Bxa3 >13 0 55378 272621295 Rd3 b4 cxb4 axb4 Nxb4 Bxb4 axb4 Bb5 Kc2 Qa2 Rc3 Na3+ Kd1 >Ba4+ Ke2 Bb5+ Ke3 Nbc4+ >13 0 55464 273037007 Rd3 b4 cxb4 axb4 Nxb4 Bxb4 axb4 Bb5 Kc2 Qa2 Rc3 Na3+ Kd1 >Ba4+ Ke2 Bb5+ Ke3 Nbc4+ >14 -40 60375 297024338 Rd3 b4 cxb4 axb4 Nxb4 Bxb4 axb4 Bb5 Kc2 Qa2 Rb3 Na3+ Kc3 >Bxf1 Rxa3 Rxa3+ b3 >14 -80 70933 347069575 Rd3 b4 cxb4 axb4 Ka1 Nc8 b3 Nxa3 Rd2 Bxf1 Rxf1 Ke8 Re2 c5 >dxc5 Bxc5 >14 -79 81320 393182276 Bxc4 dxc4 >14 -10 100910 487808166 Bxc4 dxc4 Kc2 Nc8 b4 cxb3+ Kxb3 Kc7 Kc2 b4 cxb4 Bc4 Nc3 >axb4 axb4 Bxb4 Kd2 >14 -9 160368 777570157 Kc2 Nxa3+ bxa3 Bxa3 >14 0 174028 844324842 Kc2 b4 cxb4 axb4 Nxb4 Nxa3+ bxa3 Bxf1 Rxf1 Bxb4 Qxb4 Nc4 >Qe1 Qa4+ Kd3 Nb2+ Bxb2 Qc4+ Ke3 >14 0 174029 844324842 Kc2 b4 cxb4 axb4 Nxb4 Nxa3+ bxa3 Bxf1 Rxf1 Bxb4 Qxb4 Nc4 >Qe1 Qa4+ Kd3 Nb2+ Bxb2 Qc4+ Ke3 >15 -40 217889 1060384385 Kc2 b4 cxb4 axb4 Nxb4 Bb5 Rd3 Qa4+ Kb1 Nc8 Rc3 Bxb4 >axb4 Qa2+ Kc2 Ba4+ Kd3 Nxb2+ Ke2 Nd1+ Nd2 Nxc3+ Ke3 >15 -70 308173 1501840400 Kc2 b4 cxb4 axb4 Nxb4 Bb5 Nd2 Qa4+ Nb3 Na5 Rh3 Nxb3 >Rxb3 Bc4 Rd3 Bxd3+ Bxd3 >15 -69 341844 1677945535 Bxc4 dxc4 >15 -21 391124 1932319651 Bxc4 bxc4 Qe2 Na4 Ka1 Rb3 Qc2 Rab8 Nd2 Rxb2 Bxb2 Rxb2 >Qxa4 Bb5 Qxc4 dxc4 Kxb2 >15 -20 542485 2691935962 b4 axb4 Bxc4 dxc4 axb4 Bc8 Rd2 Na4 >15 -10 569822 2828814696 b4 axb4 Bxc4 dxc4 axb4 Bc8 Rd2 Na4 Nh2 Qb7 Qe2 Kd8 Kc2 >Bf8 Kb1 Ke8 Kc2 Kd7 >15 -10 615360 3062516848 b4 axb4 Bxc4 dxc4 axb4 Bc8 Rd2 Na4 Nh2 Qb7 Qe2 Kd8 Kc2 >Bf8 Kb1 Ke8 Kc2 Kd7 >16 -10 692082 3446821256 b4 axb4 Bxc4 dxc4 cxb4 Bc8 Bb2 Bf8 Kc2 Nd5 Kb1 Kc7 Kc2 >Nf4 Nc1 Kb7 Kb1 Bd7 >16 -10 1026476 835094608 b4 axb4 Bxc4 dxc4 cxb4 Bc8 Bb2 Bf8 Kc2 Nd5 Kb1 Kc7 Kc2 >Nf4 Nc1 Kb7 Kb1 Bd7 >17 -10 1261335 2002686853 b4 axb4 Bxc4 dxc4 cxb4 Bc8 Bb2 Bf8 Kc2 Nd5 Kb1 Kc7 Rd2 >Nf4 Nc1 Qa6 Kc2 Qb7 Rf1 > > >After Ka1 yace(only material can see 0.8 pawns advantage for black that means a >pawn) > >[D]rr6/q2kbp2/bnp1p2p/pp1pP1pP/2nP2P1/P1P2N2/NP3P2/K1BRQB1R b - - 0 25 > >1 -340 5 40 Nxe5 Nxe5+ Kc7 Nxf7 >1 -260 5 47 Nxa3 bxa3 >1 0 5 65 b4 >1 0 5 95 b4 >2 0 5 167 b4 Nh2 >2 0 5 573 b4 Nh2 >3 0 6 723 b4 Nh2 bxc3 >3 0 6 933 b4 Nh2 bxc3 >4 0 6 3195 b4 cxb4 axb4 Be2 bxa3 >4 0 6 4049 b4 cxb4 axb4 Be2 bxa3 >5 0 7 6197 b4 cxb4 axb4 Be2 bxa3 bxa3 >5 0 7 8141 b4 cxb4 axb4 Be2 bxa3 bxa3 >6 0 7 10921 b4 cxb4 axb4 Be2 bxa3 bxa3 Nc8 >6 0 11 25325 b4 cxb4 axb4 Be2 bxa3 bxa3 Nc8 >7 10 14 38453 b4 cxb4 axb4 Nxb4 Nxa3 bxa3 Bxf1 >7 10 16 51275 b4 cxb4 axb4 Nxb4 Nxa3 bxa3 Bxf1 >8 -30 31 108085 b4 cxb4 axb4 Nxb4 Nxa3 bxa3 Bxf1 Rxf1 Nc8 >8 -80 44 161125 b4 cxb4 axb4 Nxb4 Bb5 Rd3 Nc8 Rb3 Qa4 >8 -79 51 200013 Rh8 Nh2 >8 0 61 249249 Rh8 Nh2 Nc8 Kb1 N8b6 Be2 Bb7 Kc2 >8 0 69 288940 Rh8 Nh2 Nc8 Kb1 N8b6 Be2 Bb7 Kc2 >9 0 83 374501 Rh8 Nh2 Nc8 Kb1 N8b6 Be2 Bb7 Kc2 Nc8 >9 1 86 385916 b4 cxb4 axb4 Nxb4 Nxa3 bxa3 Bxf1 Qe2 Bxe2 Nxg5 >9 3 95 430538 b4 cxb4 axb4 Nxb4 Nxa3 bxa3 Bxf1 Rxf1 Nc8 >9 3 106 500951 b4 cxb4 axb4 Nxb4 Nxa3 bxa3 Bxf1 Rxf1 Nc8 >10 -37 154 746001 b4 cxb4 axb4 Nxb4 Nxa3 bxa3 Bxf1 Rxf1 Nc8 Na2 Qxa3 >10 -80 221 1087348 b4 cxb4 axb4 Nxb4 Bb7 Nh2 Nc8 Kb1 N8b6 Rd3 Nc8 >10 -79 233 1163897 Rh8 Nh2 >10 0 271 1380463 Rh8 Nh2 Nc8 Kb1 Bb7 Be2 N8b6 Kc2 Nc8 Rd3 >10 0 420 2134015 Rh8 Nh2 Nc8 Kb1 Bb7 Be2 N8b6 Kc2 Nc8 Rd3 >11 0 513 2681683 Rh8 Nh2 Nc8 Kb1 Bb7 Be2 N8b6 Kc2 Nc8 Rd3 N8b6 >11 0 1531 7983338 Rh8 Nh2 Nc8 Kb1 Bb7 Be2 N8b6 Kc2 Nc8 Rd3 N8b6 >12 0 1826 9692806 Rh8 Nh2 Nc8 Kb1 Bb7 Be2 N8b6 Kc2 Nc8 Rd3 N8b6 Kb1 >12 0 4359 23123491 Rh8 Nh2 Nc8 Kb1 Bb7 Be2 N8b6 Kc2 Nc8 Rd3 N8b6 Kb1 >13 0 5292 28072415 Rh8 Nh2 Nc8 Kb1 Bb7 Be2 N8b6 Kc2 Nc8 Rd3 N8b6 Kb1 Nc8 >13 1 5512 29220431 b4 cxb4 axb4 Nxb4 Nxa3 bxa3 Bxf1 Rxf1 Nc4 Na2 Nxa3 Nd2 Rb1+ >Nxb1 Nc2+ Kb2 Nxe1 Na3 >13 40 12144 63328508 b4 cxb4 axb4 Nxb4 Nxa3 bxa3 Bxf1 Rxf1 Nc4 Na2 Nxa3 Nd2 Rb1+ >Nxb1 Nc2+ Kb2 Nxe1 Na3 >13 80 16932 87238538 b4 cxb4 axb4 Nxb4 Nxa3 bxa3 Bxf1 Rxf1 Nc4 Qe2 Bxb4 Rd3 Nxa3 >Kb2 Be1+ Ka1 >13 80 17280 89282280 b4 cxb4 axb4 Nxb4 Nxa3 bxa3 Bxf1 Rxf1 Nc4 Qe2 Bxb4 Rd3 Nxa3 >Kb2 Be1+ Ka1 >14 80 42503 217140446 b4 cxb4 axb4 b3 Nxa3 Rd2 Bxf1 Rxf1 Nbc4 Re2 Na5 Kb2 Ke8 >Bd2 Qb7 Nxb4 >14 80 43837 223592772 b4 cxb4 axb4 b3 Nxa3 Rd2 Bxf1 Rxf1 Nbc4 Re2 Na5 Kb2 Ke8 >Bd2 Qb7 Nxb4 > >Junior 7 - Blass,U >rr6/q2kbp2/bnp1p2p/pp1pP1pP/2nP2P1/P1P2N2/NP3P2/1KBRQB1R w - - 0 1 > >Analysis by Junior 7: > >25.a4 Nxa4 > ³ (-0.56) Depth: 3 00:00:01 >25.Bd3 Qc7 26.Bc2 Na4 27.Bxa4 bxa4 > = (0.07) Depth: 9 00:00:01 14kN >25.Bd3 Qc7 26.Bc2 Na4 27.Bxa4 bxa4 > = (0.07) Depth: 9 00:00:01 14kN >25.Bd3 Qc7 26.Bc2 Na4 27.Bxa4 bxa4 > = (0.07) Depth: 9 00:00:01 14kN >25.Bd3 Qc7 26.Bc2 Na4 27.Bxa4 bxa4 > = (0.07) Depth: 9 00:00:01 14kN >25.Bd3 Qc7 26.Bc2 Na4 27.Bxa4 bxa4 > = (0.07) Depth: 9 00:00:01 14kN >25.Bd3 a4 26.Nb4 Bb7 27.Nc2 Kc7 > = (0.07) Depth: 12 00:00:01 171kN >25.Bd3 b4 26.cxb4 axb4 27.Bxc4 Nxc4 28.a4 Bc8 29.b3 Na3+ 30.Bxa3 bxa3 31.Qc3 > µ (-0.98) Depth: 15 00:00:07 3607kN >25.Nd2 b4 26.Nxc4 Nxc4 27.cxb4 axb4 28.a4 Bc8 29.b3 Na3+ 30.Bxa3 bxa3 31.Qc3 > µ (-0.96) Depth: 15 00:00:12 6418kN >25.Nxg5 hxg5 26.Rh3 Rh8 27.h6 Qb8 28.h7 Qf8 29.Qe2 > µ (-0.82) Depth: 15 00:00:34 18570kN >25.Bd2 Nxd2+ 26.Qxd2 b4 27.cxb4 axb4 28.Nxb4 Bxf1 29.Rdxf1 Nc4 30.Qc3 Bxb4 >31.axb4 Qa2+ 32.Kc1 > µ (-0.79) Depth: 15 00:00:42 22973kN >25.Rd3 Nxa3+ > ³ (-0.56) Depth: 15 00:00:52 28715kN >25.Kc2 b4 26.cxb4 axb4 27.Nxb4 Bb5 28.Nd3 Qa4+ 29.Kc3 Qa5+ 30.b4 Qa4 31.Nc5+ >Bxc5 32.dxc5 > = (-0.20) Depth: 15 00:00:58 31792kN >25.Ka1 b4 26.cxb4 Nxb2 27.b5 Nxd1 28.bxa6 Nc4 29.Qxd1 Nxa3 30.Nc3 Qb6 > = (-0.10) Depth: 15 00:00:59 32776kN >25.Ka1 b4 26.cxb4 Nxb2 27.b5 Nxd1 28.bxa6 Nc4 29.Qxd1 Qb6 30.Nc3 Bxa3 31.Bxc4 >Bb2+ > ³ (-0.29) Depth: 18 00:01:36 51167kN >25.Ka1 b4 > ³ (-0.59) Depth: 20 00:07:11 223711kN > >(Blass, Tel-aviv 30.11.2001)
This page took 0 seconds to execute
Last modified: Thu, 15 Apr 21 08:11:13 -0700
Current Computer Chess Club Forums at Talkchess. This site by Sean Mintz.