Computer Chess Club Archives


Search

Terms

Messages

Subject: Re: Junior6's tactical mistake against piket in dortmund

Author: Vincent Diepeveen

Date: 12:47:32 11/30/01

Go up one level in this thread


On November 30, 2001 at 14:49:45, Uri Blass wrote:

my opinion is that black wins anyway against computer here knowing black is
GM.

>
>[D]rr6/q2kbp2/bnp1p2p/pp1pP1pP/2nP2P1/P1P2N2/NP3P2/1KBRQB1R w - - 0 25
>
>Junior played Ka1 and lost
>
>here is yace(only material version) logfile for that position(it was slowed down
>by a big factor in the first seconds so the times are not important)
>
>It was using the following material values:
>pawn:0.8,knight 3.4 bishop 3.5,rook 5,queen 10.01
>
>I prefer 1,3,5,9 but the values are the values from the version that I got from
>the programmer
>
>
>You can see that b4 has a stable score at deothes 16,17 of 0.1 pawns that means
>an advantage of only bishop for a knight
>After Ka1 white is losing a pawn
>
>You can also see that Junior7 also likes Ka1 after few minutes.
>
>I believe that b4 could at least give Junior better practical chances to save
>the game against piket.
>
>I also believe that computers can practically by good defence win games or at
>least draw against king attacks of humans when the hardware gets faster
>
>Even if the computer gets into a bad position humans are going to have big
>problems to find the right moves against correct defence
>
>What is your opinion?
>
>
>
>1 -10 0 9 Bxc4 dxc4
>1 0 0 26 Rh2
>1 0 0 52 Rh2
>2 0 0 110 Rh2 Bd8
>2 0 0 490 Rh2 Bd8
>3 0 0 1034 Rh2 Bd8 Be2
>3 0 0 1399 Rh2 Bd8 Be2
>4 0 1 4474 Rh2 a4 Be2 Bc8
>4 0 1 5215 Rh2 a4 Be2 Bc8
>5 0 1 7376 Rh2 a4 Be2 Bc8 Nb4
>5 0 2 9353 Rh2 a4 Be2 Bc8 Nb4
>6 0 3 14876 Rh2 a4 Be2 Bc8 Nb4 Bd8
>6 0 5 27183 Rh2 a4 Be2 Bc8 Nb4 Bd8
>7 0 11 51383 Rh2 a4 Be2 Bc8 Nb4 Bd8 Bf1
>7 0 21 102385 Rh2 a4 Be2 Bc8 Nb4 Bd8 Bf1
>8 0 30 151619 Rh2 a4 Be2 Bc8 Nb4 Bd8 Bf1 Kc7
>8 0 40 209631 Rh2 a4 Be2 Bc8 Nb4 Bd8 Bf1 Kc7
>9 0 65 349837 Rh2 a4 Be2 Bc8 Nb4 Bd8 Bf1 Kc7 Kc2
>9 0 92 511066 Rh2 a4 Be2 Bc8 Nb4 Bd8 Bf1 Kc7 Kc2
>10 0 153 850827 Rh2 a4 Be2 Bc8 Nb4 Bd8 Bf1 Kc7 Kc2 Kd7
>10 0 236 1303073 Rh2 a4 Be2 Bc8 Nb4 Bd8 Bf1 Kc7 Kc2 Kd7
>11 -10 1130 5792693 Rh2 b4 cxb4 axb4 axb4 Nxb2 Bxb2 Bxf1 Nc1 Bb5 Ng1 Nc4 Bc3
>11 -9 2872 14360047 Nh2 b4 Bxc4 dxc4 cxb4 axb4 Nxb4 Nd5 Nxa6 Bb4
>11 0 3025 15112569 Nh2 b4 Bxc4 Nxc4 axb4 axb4 Nxb4 Bxb4 cxb4 Qb6 Kc2 Qxb4 Qxb4
>11 0 3109 15548288 Nh2 b4 Bxc4 Nxc4 axb4 axb4 Nxb4 Bxb4 cxb4 Qb6 Kc2 Qxb4 Qxb4
>12 -40 4323 21626223 Nh2 b4 Bxc4 Bxc4 cxb4 Bxa2+ Kxa2 axb4 Qe3 bxa3 Rd3 axb2+
>Ra3 bxc1=Q Rxc1
>12 -80 4888 24284143 Nh2 b4 Bxc4 Bxc4 cxb4 Bxa2+ Kxa2 axb4 Qe3 bxa3 bxa3 Nc4 Qf3
>Bxa3 Bxa3
>12 -79 7078 35717308 Bxc4 dxc4
>12 -10 8324 42177363 Bxc4 dxc4 Kc2 Nc8 b4 cxb3+ Kxb3 Kc7 Nd2 Qb6 Kc2 a4 Nb4 Bb7
>12 -9 9518 48227197 Rh3 b4 Bxc4 Nxc4 axb4 axb4 Nxb4 Bb5
>12 0 10054 50889084 Rh3 b4 Bxc4 Nxc4 axb4 axb4 Nxb4 Bxb4 cxb4 Qb6 Kc2 Qxb4 Qxb4
>Rxb4
>12 0 10276 52030053 Rh3 b4 Bxc4 Nxc4 axb4 axb4 Nxb4 Bxb4 cxb4 Qb6 Kc2 Qxb4 Qxb4
>Rxb4
>13 -40 14023 70811643 Rh3 b4 Bxc4 Nxc4 axb4 axb4 Nxb4 Bxb4 cxb4 Bb5 Kc2 Qa2 Be3
>Nxe3+ Kc3
>13 -80 22222 108322149 Rh3 b4 cxb4 axb4 Nxb4 Nxa3+ bxa3 Bxb4 Nd2 Bxf1 Qxf1 Bxa3
>Bxa3 Nc4+ Kc2 Nxa3+ Kd3
>13 -79 24090 117377533 Bxc4 dxc4
>13 -10 28254 138402679 Bxc4 dxc4 Kc2 Nc8 b4 cxb3+ Kxb3 Kc7 Nd2 Qb6 Kc2 a4 Nb4
>Bb7 Bb2 f5
>13 -9 49364 243829428 Rd3 Nxa3+ bxa3 Bxa3
>13 0 55378 272621295 Rd3 b4 cxb4 axb4 Nxb4 Bxb4 axb4 Bb5 Kc2 Qa2 Rc3 Na3+ Kd1
>Ba4+ Ke2 Bb5+ Ke3 Nbc4+
>13 0 55464 273037007 Rd3 b4 cxb4 axb4 Nxb4 Bxb4 axb4 Bb5 Kc2 Qa2 Rc3 Na3+ Kd1
>Ba4+ Ke2 Bb5+ Ke3 Nbc4+
>14 -40 60375 297024338 Rd3 b4 cxb4 axb4 Nxb4 Bxb4 axb4 Bb5 Kc2 Qa2 Rb3 Na3+ Kc3
>Bxf1 Rxa3 Rxa3+ b3
>14 -80 70933 347069575 Rd3 b4 cxb4 axb4 Ka1 Nc8 b3 Nxa3 Rd2 Bxf1 Rxf1 Ke8 Re2 c5
>dxc5 Bxc5
>14 -79 81320 393182276 Bxc4 dxc4
>14 -10 100910 487808166 Bxc4 dxc4 Kc2 Nc8 b4 cxb3+ Kxb3 Kc7 Kc2 b4 cxb4 Bc4 Nc3
>axb4 axb4 Bxb4 Kd2
>14 -9 160368 777570157 Kc2 Nxa3+ bxa3 Bxa3
>14 0 174028 844324842 Kc2 b4 cxb4 axb4 Nxb4 Nxa3+ bxa3 Bxf1 Rxf1 Bxb4 Qxb4 Nc4
>Qe1 Qa4+ Kd3 Nb2+ Bxb2 Qc4+ Ke3
>14 0 174029 844324842 Kc2 b4 cxb4 axb4 Nxb4 Nxa3+ bxa3 Bxf1 Rxf1 Bxb4 Qxb4 Nc4
>Qe1 Qa4+ Kd3 Nb2+ Bxb2 Qc4+ Ke3
>15 -40 217889 1060384385 Kc2 b4 cxb4 axb4 Nxb4 Bb5 Rd3 Qa4+ Kb1 Nc8 Rc3 Bxb4
>axb4 Qa2+ Kc2 Ba4+ Kd3 Nxb2+ Ke2 Nd1+ Nd2 Nxc3+ Ke3
>15 -70 308173 1501840400 Kc2 b4 cxb4 axb4 Nxb4 Bb5 Nd2 Qa4+ Nb3 Na5 Rh3 Nxb3
>Rxb3 Bc4 Rd3 Bxd3+ Bxd3
>15 -69 341844 1677945535 Bxc4 dxc4
>15 -21 391124 1932319651 Bxc4 bxc4 Qe2 Na4 Ka1 Rb3 Qc2 Rab8 Nd2 Rxb2 Bxb2 Rxb2
>Qxa4 Bb5 Qxc4 dxc4 Kxb2
>15 -20 542485 2691935962 b4 axb4 Bxc4 dxc4 axb4 Bc8 Rd2 Na4
>15 -10 569822 2828814696 b4 axb4 Bxc4 dxc4 axb4 Bc8 Rd2 Na4 Nh2 Qb7 Qe2 Kd8 Kc2
>Bf8 Kb1 Ke8 Kc2 Kd7
>15 -10 615360 3062516848 b4 axb4 Bxc4 dxc4 axb4 Bc8 Rd2 Na4 Nh2 Qb7 Qe2 Kd8 Kc2
>Bf8 Kb1 Ke8 Kc2 Kd7
>16 -10 692082 3446821256 b4 axb4 Bxc4 dxc4 cxb4 Bc8 Bb2 Bf8 Kc2 Nd5 Kb1 Kc7 Kc2
>Nf4 Nc1 Kb7 Kb1 Bd7
>16 -10 1026476 835094608 b4 axb4 Bxc4 dxc4 cxb4 Bc8 Bb2 Bf8 Kc2 Nd5 Kb1 Kc7 Kc2
>Nf4 Nc1 Kb7 Kb1 Bd7
>17 -10 1261335 2002686853 b4 axb4 Bxc4 dxc4 cxb4 Bc8 Bb2 Bf8 Kc2 Nd5 Kb1 Kc7 Rd2
>Nf4 Nc1 Qa6 Kc2 Qb7 Rf1
>
>
>After Ka1 yace(only material can see 0.8 pawns advantage for black that means a
>pawn)
>
>[D]rr6/q2kbp2/bnp1p2p/pp1pP1pP/2nP2P1/P1P2N2/NP3P2/K1BRQB1R b - - 0 25
>
>1 -340 5 40 Nxe5 Nxe5+ Kc7 Nxf7
>1 -260 5 47 Nxa3 bxa3
>1 0 5 65 b4
>1 0 5 95 b4
>2 0 5 167 b4 Nh2
>2 0 5 573 b4 Nh2
>3 0 6 723 b4 Nh2 bxc3
>3 0 6 933 b4 Nh2 bxc3
>4 0 6 3195 b4 cxb4 axb4 Be2 bxa3
>4 0 6 4049 b4 cxb4 axb4 Be2 bxa3
>5 0 7 6197 b4 cxb4 axb4 Be2 bxa3 bxa3
>5 0 7 8141 b4 cxb4 axb4 Be2 bxa3 bxa3
>6 0 7 10921 b4 cxb4 axb4 Be2 bxa3 bxa3 Nc8
>6 0 11 25325 b4 cxb4 axb4 Be2 bxa3 bxa3 Nc8
>7 10 14 38453 b4 cxb4 axb4 Nxb4 Nxa3 bxa3 Bxf1
>7 10 16 51275 b4 cxb4 axb4 Nxb4 Nxa3 bxa3 Bxf1
>8 -30 31 108085 b4 cxb4 axb4 Nxb4 Nxa3 bxa3 Bxf1 Rxf1 Nc8
>8 -80 44 161125 b4 cxb4 axb4 Nxb4 Bb5 Rd3 Nc8 Rb3 Qa4
>8 -79 51 200013 Rh8 Nh2
>8 0 61 249249 Rh8 Nh2 Nc8 Kb1 N8b6 Be2 Bb7 Kc2
>8 0 69 288940 Rh8 Nh2 Nc8 Kb1 N8b6 Be2 Bb7 Kc2
>9 0 83 374501 Rh8 Nh2 Nc8 Kb1 N8b6 Be2 Bb7 Kc2 Nc8
>9 1 86 385916 b4 cxb4 axb4 Nxb4 Nxa3 bxa3 Bxf1 Qe2 Bxe2 Nxg5
>9 3 95 430538 b4 cxb4 axb4 Nxb4 Nxa3 bxa3 Bxf1 Rxf1 Nc8
>9 3 106 500951 b4 cxb4 axb4 Nxb4 Nxa3 bxa3 Bxf1 Rxf1 Nc8
>10 -37 154 746001 b4 cxb4 axb4 Nxb4 Nxa3 bxa3 Bxf1 Rxf1 Nc8 Na2 Qxa3
>10 -80 221 1087348 b4 cxb4 axb4 Nxb4 Bb7 Nh2 Nc8 Kb1 N8b6 Rd3 Nc8
>10 -79 233 1163897 Rh8 Nh2
>10 0 271 1380463 Rh8 Nh2 Nc8 Kb1 Bb7 Be2 N8b6 Kc2 Nc8 Rd3
>10 0 420 2134015 Rh8 Nh2 Nc8 Kb1 Bb7 Be2 N8b6 Kc2 Nc8 Rd3
>11 0 513 2681683 Rh8 Nh2 Nc8 Kb1 Bb7 Be2 N8b6 Kc2 Nc8 Rd3 N8b6
>11 0 1531 7983338 Rh8 Nh2 Nc8 Kb1 Bb7 Be2 N8b6 Kc2 Nc8 Rd3 N8b6
>12 0 1826 9692806 Rh8 Nh2 Nc8 Kb1 Bb7 Be2 N8b6 Kc2 Nc8 Rd3 N8b6 Kb1
>12 0 4359 23123491 Rh8 Nh2 Nc8 Kb1 Bb7 Be2 N8b6 Kc2 Nc8 Rd3 N8b6 Kb1
>13 0 5292 28072415 Rh8 Nh2 Nc8 Kb1 Bb7 Be2 N8b6 Kc2 Nc8 Rd3 N8b6 Kb1 Nc8
>13 1 5512 29220431 b4 cxb4 axb4 Nxb4 Nxa3 bxa3 Bxf1 Rxf1 Nc4 Na2 Nxa3 Nd2 Rb1+
>Nxb1 Nc2+ Kb2 Nxe1 Na3
>13 40 12144 63328508 b4 cxb4 axb4 Nxb4 Nxa3 bxa3 Bxf1 Rxf1 Nc4 Na2 Nxa3 Nd2 Rb1+
>Nxb1 Nc2+ Kb2 Nxe1 Na3
>13 80 16932 87238538 b4 cxb4 axb4 Nxb4 Nxa3 bxa3 Bxf1 Rxf1 Nc4 Qe2 Bxb4 Rd3 Nxa3
>Kb2 Be1+ Ka1
>13 80 17280 89282280 b4 cxb4 axb4 Nxb4 Nxa3 bxa3 Bxf1 Rxf1 Nc4 Qe2 Bxb4 Rd3 Nxa3
>Kb2 Be1+ Ka1
>14 80 42503 217140446 b4 cxb4 axb4 b3 Nxa3 Rd2 Bxf1 Rxf1 Nbc4 Re2 Na5 Kb2 Ke8
>Bd2 Qb7 Nxb4
>14 80 43837 223592772 b4 cxb4 axb4 b3 Nxa3 Rd2 Bxf1 Rxf1 Nbc4 Re2 Na5 Kb2 Ke8
>Bd2 Qb7 Nxb4
>
>Junior 7 - Blass,U
>rr6/q2kbp2/bnp1p2p/pp1pP1pP/2nP2P1/P1P2N2/NP3P2/1KBRQB1R w - - 0 1
>
>Analysis by Junior 7:
>
>25.a4 Nxa4
>  ³  (-0.56)   Depth: 3   00:00:01
>25.Bd3 Qc7 26.Bc2 Na4 27.Bxa4 bxa4
>  =  (0.07)   Depth: 9   00:00:01  14kN
>25.Bd3 Qc7 26.Bc2 Na4 27.Bxa4 bxa4
>  =  (0.07)   Depth: 9   00:00:01  14kN
>25.Bd3 Qc7 26.Bc2 Na4 27.Bxa4 bxa4
>  =  (0.07)   Depth: 9   00:00:01  14kN
>25.Bd3 Qc7 26.Bc2 Na4 27.Bxa4 bxa4
>  =  (0.07)   Depth: 9   00:00:01  14kN
>25.Bd3 Qc7 26.Bc2 Na4 27.Bxa4 bxa4
>  =  (0.07)   Depth: 9   00:00:01  14kN
>25.Bd3 a4 26.Nb4 Bb7 27.Nc2 Kc7
>  =  (0.07)   Depth: 12   00:00:01  171kN
>25.Bd3 b4 26.cxb4 axb4 27.Bxc4 Nxc4 28.a4 Bc8 29.b3 Na3+ 30.Bxa3 bxa3 31.Qc3
>  µ  (-0.98)   Depth: 15   00:00:07  3607kN
>25.Nd2 b4 26.Nxc4 Nxc4 27.cxb4 axb4 28.a4 Bc8 29.b3 Na3+ 30.Bxa3 bxa3 31.Qc3
>  µ  (-0.96)   Depth: 15   00:00:12  6418kN
>25.Nxg5 hxg5 26.Rh3 Rh8 27.h6 Qb8 28.h7 Qf8 29.Qe2
>  µ  (-0.82)   Depth: 15   00:00:34  18570kN
>25.Bd2 Nxd2+ 26.Qxd2 b4 27.cxb4 axb4 28.Nxb4 Bxf1 29.Rdxf1 Nc4 30.Qc3 Bxb4
>31.axb4 Qa2+ 32.Kc1
>  µ  (-0.79)   Depth: 15   00:00:42  22973kN
>25.Rd3 Nxa3+
>  ³  (-0.56)   Depth: 15   00:00:52  28715kN
>25.Kc2 b4 26.cxb4 axb4 27.Nxb4 Bb5 28.Nd3 Qa4+ 29.Kc3 Qa5+ 30.b4 Qa4 31.Nc5+
>Bxc5 32.dxc5
>  =  (-0.20)   Depth: 15   00:00:58  31792kN
>25.Ka1 b4 26.cxb4 Nxb2 27.b5 Nxd1 28.bxa6 Nc4 29.Qxd1 Nxa3 30.Nc3 Qb6
>  =  (-0.10)   Depth: 15   00:00:59  32776kN
>25.Ka1 b4 26.cxb4 Nxb2 27.b5 Nxd1 28.bxa6 Nc4 29.Qxd1 Qb6 30.Nc3 Bxa3 31.Bxc4
>Bb2+
>  ³  (-0.29)   Depth: 18   00:01:36  51167kN
>25.Ka1 b4
>  ³  (-0.59)   Depth: 20   00:07:11  223711kN
>
>(Blass, Tel-aviv 30.11.2001)



This page took 0 seconds to execute

Last modified: Thu, 15 Apr 21 08:11:13 -0700

Current Computer Chess Club Forums at Talkchess. This site by Sean Mintz.