Author: Jason Kent
Date: 06:22:46 06/08/04
Go up one level in this thread
1: Shredder 8 72.0 / 126 VS Junior =1=10000110==11100 9.0/18 VS Fritz 100=1==1========00 8.5/18 VS Hiarcs =1111=1010==1=1110 12.5/18 VS CM9k 01111=01001=001010 9.0/18 VS Ruffian =011=10==1=0=1110= 10.5/18 VS List =0=1===0==1=11=0=0 9.0/18 VS Aristar =1==11=110=1=11=11 13.5/18 2: Junior 8 70.5 / 126 VS Shredder =0=01111001==00011 VS Fritz 0=1010==10=====010 VS Hiarcs 0101=10==10=11==11 VS CM9k 1100=1=110011=1000 VS Ruffian =10111====110===10 VS List 0=111=101=011====0 VS Aristar =1101=00011=1==111 3: Fritz 8 68.5 / 126 VS Shredder 011=0==0========11 VS Junior 1=0101==01=====101 VS Hiarcs 0==00=0=0=111=1=11 VS CM9k ===10=1=0=11=101== VS Ruffian ===1=011=10001=000 VS List =10=111======110== VS Aristar =001=11=01=101==== 4: Hiarcs 9 65.0 / 126 VS Shredder =0000=0101==0=0001 VS Junior 1010=01==01=00==00 VS Fritz 1==11=1=1=000=0=00 VS CM9k 0=0==11==001===01= VS Ruffian 110100=11==01110=1 VS List =110==11===1=1=1=1 VS Aristar 1010==1011=11=1101 5: CM9 X 64.0 / 126 VS Shredder 10000=10110=110101 VS Junior 0011=0=001100=0111 VS Fritz ===01=0=1=00=010== VS Hiarcs 1=1==00==110===10= VS Ruffian =10=0110=====0011= VS List 011===1==0=01=1000 VS Aristar 110111=0=1=111010= 6: Ruffian 2.1.0 59.5 / 126 VS Shredder =100=01==0=1=0001= VS Junior =01000====001===01 VS Fritz ===0=100=01110=111 VS Hiarcs 001011=00==10001=0 VS CM9k =01=1001=====1100= VS List =1=0==1==001=11=0= VS Aristar 1100=110==11=10=00 7: List 513 55.5 / 126 VS Shredder =1=0===1==0=00=1=1 VS Junior 1=000=010=100====1 VS Fritz =01=000======001== VS Hiarcs =001==00===0=0=0=0 VS CM9k 100===0==1=10=0111 VS Ruffian =0=1==0==110=00=1= VS Aristar 0==011=010=01=1010 8: Aristarch 4.41 49.0 / 126 VS Shredder =0==00=001=0=00=00 VS Junior =0010=11100=0==000 VS Fritz =110=00=10=010==== VS Hiarcs 0101==0100=00=0010 VS CM9k 001000=1=0=000101= VS Ruffian 0011=001==00=01=11 VS List 1==100=101=10=0101
This page took 0 seconds to execute
Last modified: Thu, 15 Apr 21 08:11:13 -0700
Current Computer Chess Club Forums at Talkchess. This site by Sean Mintz.