Author: Tim Foden
Date: 01:08:40 02/02/05
Go up one level in this thread
On February 01, 2005 at 16:44:48, Thomas Mayer wrote:
>Hi,
>
>I had promised some more interesting results of my experiments with
>KB*KP* endgames... The following analysis are produced by an alpha
>version of Quark after implementing KBKP bitbase, a recognizer and
>a special endgame routine for KB*KP* endgames. 5-men tablebases are
>disabled.
>The implementation has definitely NO influence at all to Quarks
>overall speed.
>
>[D] 8/p1p5/3p4/p3p3/k4p2/2K3pB/7p/8 w - - 0 1
Just as a contrast, GLC 3.01.2.2 doesn't have any of this info, and thinks this
is -12 :)...
>anal
Game stage: Endgame
Current eval: -11.518
Ply Time Score Nodes Principal variation
7 0.000 -11.535 8495 Bg2 Kb5 2. Kd3 a4 3. Ke4 c5
7 0.010 -11.535 12107 Bg2 Kb5 2. Kd3 a4 3. Ke4 c5
8 0.020 -11.703 23228 Bg2 Kb5 2. Bf1+ Kc5 3. Bg2 a4 4. Kb2 d5
8 0.020 -11.595 27819 Bd7+ Ka3 2. Bc6 a4 3. Bh1 a5 4. Kc4 Kb2
8 0.020 -11.595 29893 Bd7+ Ka3 2. Bc6 a4 3. Bh1 a5 4. Kc4 Kb2
9 0.030 -11.531 40744 Bd7+ Ka3 2. Bc6 a4 3. Bh1 a5 4. Kc4 Kb2 5. Kb5 a3
6. Kxa5
9 0.040 -11.531 51743 Bd7+ Ka3 2. Bc6 a4 3. Bh1 a5 4. Kc4 Kb2 5. Kb5 a3
6. Kxa5
10 0.050 -11.531 64583 Bd7+ Ka3 2. Bc6 a4 3. Bh1 a5 4. Kc4 Kb2 5. Kb5 a3
6. Kxa5
10 0.070 -11.531 82199 Bd7+ Ka3 2. Bc6 a4 3. Bh1 a5 4. Kc4 Kb2 5. Kb5 a3
6. Kxa5
11 0.100 -11.607 111264 Bd7+ Ka3 2. Bc6 a4 3. Bh1 a5 4. Bg2 Ka2 5. Kc4 a3
6. Kb5 Kb3 7. Kxa5
11 0.130 -11.607 151256 Bd7+ Ka3 2. Bc6 a4 3. Bh1 a5 4. Bg2 Ka2 5. Kc4 a3
6. Kb5 Kb3 7. Kxa5
12 0.160 -11.607 187427 Bd7+ Ka3 2. Bc6 a4 3. Bh1 a5 4. Bg2 Ka2 5. Kc4 a3
6. Kb5 Kb3 7. Kxa5
12 0.210 -11.607 245995 Bd7+ Ka3 2. Bc6 a4 3. Bh1 a5 4. Bg2 Ka2 5. Kc4 a3
6. Kb5 Kb3 7. Kxa5
13 0.300 -11.496 342598 Bd7+ Ka3 2. Bc6 a4 3. Bh1 a5 4. Bd5 c5 5. Bg2 Ka2
6. Kc4 a3 7. Kd5 Kb3 8. Kxd6
13 0.391 -11.496 447192 Bd7+ Ka3 2. Bc6 a4 3. Bh1 a5 4. Bd5 c5 5. Bg2 Ka2
6. Kc4 a3 7. Kd5 Kb3 8. Kxd6
14 0.491 -11.496 567379 Bd7+ Ka3 2. Bc6 a4 3. Bh1 a5 4. Bd5 c5 5. Bg2 Ka2
6. Kc4 a3 7. Kd5 Kb3 8. Kxd6
14 0.631 -11.496 720953 Bd7+ Ka3 2. Bc6 a4 3. Bh1 a5 4. Bd5 c5 5. Bg2 Ka2
6. Kc4 a3 7. Kd5 Kb3 8. Kxd6
15 1.462 -11.896 1670941 Bd7+ {--} Ka3 2. Bc6 a4 3. Bh1 a5 4. Bd5 c5 5. Bg2
Ka2 6. Kc4 a3 7. Kd5 Kb3 8. Kxd6 a2 9. Kxe5
a1=Q+
15 1.542 -11.895 1754345 Bd7+ {++} Ka3 2. Bc6 a4 3. Bh1 a5 4. Bd5 c5 5. Bg2
Ka2 6. Bd5+ Ka1 7. Bf3 a3 8. Kb3 a2 {ht} 9. Be4
15 2.804 -11.905 3595726 Bd7+ Ka3 2. Bc6 a4 3. Bh1 a5 4. Bd5 c5 5. Bg2 Ka2
6. Bd5+ Ka1 7. Kc4 {ht} Kb2
15 3.014 -11.905 3849168 Bd7+ Ka3 2. Bc6 a4 3. Bh1 a5 4. Bd5 c5 5. Bg2 Ka2
6. Bd5+ Ka1 7. Kc4 {ht} Kb2
16 3.545 -11.987 4478533 Bd7+ Ka3 2. Bc6 a4 3. Bh1 a5 4. Bc6 Ka2 5. Bd5+
Ka1 6. Bc6 a3 7. Kb3 a2 8. Ka3 f3 9. Bxf3 Kb1
16 4.086 -11.987 5114794 Bd7+ Ka3 2. Bc6 a4 3. Bh1 a5 4. Bc6 Ka2 5. Bd5+
Ka1 6. Bc6 a3 7. Kb3 a2 8. Ka3 f3 9. Bxf3 Kb1
17 7.401 -12.387 8492557 Bd7+ {--} Ka3 2. Bc6 a4 3. Bh1 a5 4. Bc6 Ka2 5.
Bd5+ Ka1 6. Bc6 a3 7. Kb3 a2 8. Ka3 a4 9. Be4 c5
10. Bg2 f3
17 8.172 -12.386 9294098 Bd7+ {++} Ka3 2. Bc6 a4 3. Kc2 {ht} Kb4
17 10.215 -12.486 12466k Bd7+ Ka3 2. Bc6 a4 3. Bg2 c5 4. Bd5 {ht} a5
17 10.805 -12.486 13194k Bd7+ Ka3 2. Bc6 a4 3. Bg2 c5 4. Bd5 {ht} a5
18 11.567 -12.486 14131k Bd7+ Ka3 2. Bc6 a4 3. Bg2 c5 4. Bd5 a5 5. Bg2 Ka2
6. Bd5+ Ka1 7. Bg2 a3 8. Kb3 a2 9. Be4 d5 10.
Bxd5 Kb1
18 11.957 -12.486 14596k Bd7+ Ka3 2. Bc6 a4 3. Bg2 c5 4. Bd5 a5 5. Bg2 Ka2
6. Bd5+ Ka1 7. Bg2 a3 8. Kb3 a2 9. Be4 d5 10.
Bxd5 Kb1
19 13.289 -12.086 16142k Bd7+ {++} Ka3 2. Bc6 a4 3. Bg2 c5 4. Bd5 a5 5. Bg2
Ka2 6. Bd5+ Ka1 7. Kc2 a3 8. Kc1 a2 9. Kc2 h1=Q
10. Bxh1 e4 11. Bxe4 f3
19 14.491 -12.087 17638k Bd7+ {--} Ka3 2. Bc6 a4 3. Bg2 c5 4. Bd5 a5 5. Bg2
Ka2 6. Bd5+ Ka1 7. Kc2 a3 8. Kc1 a2 9. Kc2 a4
10. Be4 {ht} a3
19 15.222 -12.047 18560k Bd7+ Ka3 2. Bc6 a4 3. Bg2 c5 4. Bd5 a5 5. Bg2 Ka2
6. Bd5+ Ka1 7. Kc2 a3 8. Kc1 a2 9. Kc2 a4 10.
Be4 d5 11. Bxd5 a3
19 15.222 -12.047 18560k Bd7+ Ka3 2. Bc6 a4 3. Bg2 c5 4. Bd5 a5 5. Bg2 Ka2
6. Bd5+ Ka1 7. Kc2 a3 8. Kc1 a2 9. Kc2 a4 10.
Be4 d5 11. Bxd5 a3
20 17.505 -12.447 21372k Bd7+ {--} Ka3 2. Bc6 a4 3. Bg2 c5 4. Bd5 a5 5. Bg2
Ka2 6. Bd5+ Ka1 7. Kc2 a3 8. Kc1 a2 9. Kc2 a4
10. Be4 a3 11. Kc3 f3
Generating internal KP-K end-game table...
Done (0.171 secs)
20 19.438 -12.446 23451k Bd7+ {++} Ka3 2. Bc6 a4 3. Bg2 c5 4. Bd5 a5 5. Bg2
Ka2 6. Bd5+ Ka1 7. Kc2 a3 8. Kc1 a2 9. Kc2 a4
10. Be4 a3 11. Kc3 f3 12. Bxf3
20 26.418 -12.308 32513k Bd7+ Ka3 2. Bc6 a4 3. Bg2 Ka2 4. Be4 c5 5. Bd5+
Ka1 6. Bh1 a3 7. Bd5 a2 8. Kc2 a5 9. Be4 a4 10.
Bd5 {ht} c4
20 26.418 -12.308 32513k Bd7+ Ka3 2. Bc6 a4 3. Bg2 Ka2 4. Be4 c5 5. Bd5+
Ka1 6. Bh1 a3 7. Bd5 a2 8. Kc2 a5 9. Be4 a4 10.
Bd5 {ht} c4
21 33.769 -12.308 41411k Bd7+ Ka3 2. Bc6 a4 3. Bg2 Ka2 4. Be4 c5 5. Bd5+
Ka1 6. Bh1 a3 7. Bd5 a2 8. Kc2 a5 9. Be4 a4 10.
Bd5 {ht} c4
21 35.431 -12.308 43424k Bd7+ Ka3 2. Bc6 a4 3. Bg2 Ka2 4. Be4 c5 5. Bd5+
Ka1 6. Bh1 a3 7. Bd5 a2 8. Kc2 a5 9. Be4 a4 10.
Bd5 {ht} c4
22 1:02.43 -12.047 75700k Bd7+ Ka3 2. Bc6 a4 3. Bg2 Ka2 4. Kc2 c5 5. Bd5+
Ka3 6. Kc3 a5 {ht} 7. Bg2
22 1:05.72 -12.047 79635k Bd7+ Ka3 2. Bc6 a4 3. Bg2 Ka2 4. Kc2 c5 5. Bd5+
Ka3 6. Kc3 a5 {ht} 7. Bg2
Analyse>exit
local: t=1:09.18 nps=1209352.6 n=83661805 (44.2% / 55.8%)
total: t=1:09.18 nps=1209352.6 n=83661805
stats: fh=92.9%/3.37%/1.178% draws=108239
trans: probes=35587860 hits=13523655 (38.00%) draft=9619573 (27.03%)
tcuts: exact=8998 (0.03%) upper=4988328 (14.02%) lower=3027446 (8.51%)
tstor: exact=6523 (0.05%) upper=7118413 (59.65%) lower=4808418 (40.29%)
ext: check=4696850 recap=1108 ppush=1154192 1rep=205060 thrt=503979
q-moves: gen=11184613 tested=8805959 made/un=3844572 max-dep=6
max eval diff: part-1=10.109 part-2=1.886
>Let's go a bit deeper in the endgame:
>
>So we get this position:
>
>[D] 8/8/3p4/p1p1p3/5p2/6p1/p1K4p/k6B w - - 0 9
Again GLC 3.01.2.2... this time it sees the draw. But is Bd5 also correct here?
>anal
Game stage: Endgame
Current eval: -12.487
Ply Time Score Nodes Principal variation
6 0.010 -13.329 5925 Kc1 a4 2. Be4 a3 3. Bh1 {ht} c4
6 0.010 -12.709 7596 Bf3 {++} a4 2. Be4 a3 3. Kb3 c4+ 4. Kxa3
6 0.020 -12.710 9796 Bf3 {--} a4 2. Be4 a3 3. Kb3 f3
6 0.020 -12.047 10305 Bf3 a4 2. Be4 a3 3. Kb3 d5 4. Bxd5
6 0.020 -12.047 10317 Bf3 a4 2. Be4 a3 3. Kb3 d5 4. Bxd5
7 0.030 -12.447 15060 Bf3 {--} a4 2. Be4 a3 3. Kb3 f3
7 0.030 -12.446 15860 Bf3 {++} a4 2. Be4 a3 3. Kb3 f3 4. Bxf3
7 0.030 -12.058 16752 Bf3 a4 2. Be4 a3 3. Kb3 c4+ {ht} 4. Kxa3
7 0.040 -12.058 16764 Bf3 a4 2. Be4 a3 3. Kb3 c4+ {ht} 4. Kxa3
8 0.050 -12.458 28349 Bf3 {--} a4 2. Be4 a3 3. Kb3 f3 4. Bxf3 Kb1
8 0.050 -12.457 30607 Bf3 {++} a4 2. Be4 a3 3. Bf3 c4 4. Be4 f3 5. Bxf3
8 0.060 -12.420 32156 Bf3 a4 2. Be4 c4 3. Bf3 c3 4. Kxc3 Kb1
8 0.060 -12.420 32168 Bf3 a4 2. Be4 c4 3. Bf3 c3 4. Kxc3 Kb1
9 0.070 -12.308 39078 Bf3 a4 2. Be4 c4 3. Bh1 a3 4. Bf3 d5 5. Bxd5
9 0.090 -12.020 63688 Kb3 {++} c4+ 2. Kc2 a4 3. Bf3 a3 4. Be4 f3 5. Bxf3
e4 6. Bxe4
9 0.110 -10.933 73419 Kb3 c4+ 2. Kc2 a4 3. Bf3 a3 4. Be4 d5 5. Bxd5 e4
6. Bxe4
9 0.120 -10.933 80936 Kb3 c4+ 2. Kc2 a4 3. Bf3 a3 4. Be4 d5 5. Bxd5 e4
6. Bxe4
10 0.140 -11.333 104452 Kb3 {--} c4+ 2. Kc2 a4 3. Bf3 a3 4. Be4 d5 5. Bxd5
e4
10 0.160 -11.332 115236 Kb3 {++} c4+ 2. Kc2 a4 3. Bf3 a3 4. Be4 d5 5. Bxd5
e4 6. Bxe4
10 0.170 -11.300 128681 Kb3 Kb1 2. Be4+ Kc1 3. Kxa2 c4 4. Ka3 c3 5. Ka4 c2
6. Kxa5 Kd2
10 0.180 -11.300 128693 Kb3 Kb1 2. Be4+ Kc1 3. Kxa2 c4 4. Ka3 c3 5. Ka4 c2
6. Kxa5 Kd2
11 0.201 -10.933 151480 Bd5 c4 2. Bh1 {ht} a4
11 0.211 -10.933 157438 Bd5 c4 2. Bh1 {ht} a4
12 0.241 -11.333 192003 Bd5 {--} c4 2. Bh1 a4 3. Bf3 a3 4. Be4 d5 5. Bxd5
c3 6. Kxc3 Kb1
12 0.251 -11.332 205334 Bd5 {++} c4 2. Bh1 a4 3. Bf3 a3 4. Be4 d5 5. Bxd5
c3 6. Be4 f3 7. Bxf3
12 0.271 -10.899 215312 Bd5 c4 2. Bh1 a4 3. Bf3 a3 4. Be4 c3 5. Bf3 d5 6.
Bxd5 e4 7. Bxe4
12 0.271 -10.899 215324 Bd5 c4 2. Bh1 a4 3. Bf3 a3 4. Be4 c3 5. Bf3 d5 6.
Bxd5 e4 7. Bxe4
13 0.311 -11.299 258612 Bd5 {--} c4 2. Bh1 a4 3. Bf3 a3 4. Be4 c3 5. Bf3
d5 6. Bxd5 e4
13 0.331 -11.298 279415 Bd5 {++} c4 2. Bh1 a4 3. Bf3 a3 4. Be4 c3 5. Bf3
d5 6. Bxd5 e4 7. Bxe4
13 0.351 -10.899 294586 Bd5 c4 2. Bh1 a4 3. Bf3 a3 4. Be4 c3 5. Bf3 d5 6.
Bxd5 e4 7. Bxe4
13 0.351 -10.899 294598 Bd5 c4 2. Bh1 a4 3. Bf3 a3 4. Be4 c3 5. Bf3 d5 6.
Bxd5 e4 7. Bxe4
14 0.391 -10.499 329703 Bd5 {++} c4 2. Bh1 a4 3. Bf3 a3 4. Be4 c3 5. Bf3
d5 6. Bxd5 e4 7. Bxe4 f3 8. Bxf3
14 0.441 -9.233 382654 Bd5 c4 2. Bh1 a4 3. Bf3 a3 4. Be4 c3 5. Bd5 e4 6.
Bxe4 d5 7. Bxd5 f3 8. Bxf3
14 0.471 -9.233 411861 Bd5 c4 2. Bh1 a4 3. Bf3 a3 4. Be4 c3 5. Bd5 e4 6.
Bxe4 d5 7. Bxd5 f3 8. Bxf3
15 0.561 -9.633 528546 Bd5 {--} c4 2. Bh1 a4 3. Bf3 a3 4. Be4 c3 5. Bd5
e4 6. Bxe4 d5 7. Bxd5 f3
15 0.621 -9.632 587610 Bd5 {++} c4 2. Bh1 a4 3. Bf3 a3 4. Be4 c3 5. Bd5
e4 6. Bxe4 d5 7. Bxd5 f3 8. Bxf3
15 0.651 -9.233 620270 Bd5 c4 2. Bh1 a4 3. Bf3 a3 4. Be4 c3 5. Bd5 e4 6.
Bxe4 d5 7. Bxd5 f3 8. Bxf3
15 0.651 -9.233 620282 Bd5 c4 2. Bh1 a4 3. Bf3 a3 4. Be4 c3 5. Bd5 e4 6.
Bxe4 d5 7. Bxd5 f3 8. Bxf3
16 0.751 -8.833 711149 Bd5 {++} c4 2. Bh1 a4 3. Bf3 a3 4. Be4 c3 5. Bd5
e4 6. Bxe4 d5 7. Bxd5 f3 8. Bxf3 g2 9. Bxg2
16 0.851 -6.329 832954 Bd5 c4 2. Bh1 a4 3. Bf3 a3 4. Be4 c3 5. Bd5 e4 6.
Bxe4 d5 7. Bxd5 f3 8. Bxf3 g2 9. Bxg2
16 0.902 -6.329 890079 Bd5 c4 2. Bh1 a4 3. Bf3 a3 4. Be4 c3 5. Bd5 e4 6.
Bxe4 d5 7. Bxd5 f3 8. Bxf3 g2 9. Bxg2
17 1.102 -6.532 1136830 Bd5 c4 2. Bh1 a4 3. Bf3 a3 4. Be4 c3 5. Kc1 f3 6.
Bxf3 e4 7. Bxe4 d5 8. Bxd5 h1=B 9. Bxh1
17 1.172 -6.532 1237111 Bd5 c4 2. Bh1 a4 3. Bf3 a3 4. Be4 c3 5. Kc1 f3 6.
Bxf3 e4 7. Bxe4 d5 8. Bxd5 h1=B 9. Bxh1
18 1.392 -6.132 1487936 Bd5 {++} c4 2. Bh1 a4 3. Bf3 a3 4. Be4 c3 5. Kc1
f3 6. Bxf3 e4 7. Bxe4 d5 8. Bxd5 h1=Q+ 9. Bxh1
c2 10. Kxc2 g2 11. Bxg2
18 1.603 -4.186 1744548 Bd5 c4 2. Bh1 a4 3. Bf3 a3 4. Be4 c3 5. Bf3 d5 6.
Bxd5 e4 7. Bxe4 f3 8. Bxf3 g2 9. Bxg2 h1=Q 10.
Bxh1
18 1.663 -4.186 1825361 Bd5 c4 2. Bh1 a4 3. Bf3 a3 4. Be4 c3 5. Bf3 d5 6.
Bxd5 e4 7. Bxe4 f3 8. Bxf3 g2 9. Bxg2 h1=Q 10.
Bxh1
19 2.023 -3.786 2277342 Bd5 {++} c4 2. Bh1 a4 3. Bf3 a3 4. Be4 c3 5. Bf3
d5 6. Bxd5 e4 7. Bxe4 f3 8. Bxf3 g2 9. Bxg2 h1=Q
10. Bxh1
19 2.253 +0.000 2583163 Bd5 c4 2. Bh1 a4 3. Bf3 a3 4. Be4 c3 5. Bf3 d5 6.
Bxd5 e4 7. Bxe4 f3 8. Bxf3 g2 9. Bxg2 h1=Q 10.
Bxh1
19 2.314 +0.000 2672362 Bd5 c4 2. Bh1 a4 3. Bf3 a3 4. Be4 c3 5. Bf3 d5 6.
Bxd5 e4 7. Bxe4 f3 8. Bxf3 g2 9. Bxg2 h1=Q 10.
Bxh1
20 2.944 +0.000 3524743 Bd5 c4 2. Bh1 a4 3. Bf3 a3 4. Be4 c3 5. Bf3 d5 6.
Bxd5 e4 7. Bxe4 f3 8. Bxf3 g2 9. Bxg2 h1=Q 10.
Bxh1
20 3.015 +0.000 3630364 Bd5 c4 2. Bh1 a4 3. Bf3 a3 4. Be4 c3 5. Bf3 d5 6.
Bxd5 e4 7. Bxe4 f3 8. Bxf3 g2 9. Bxg2 h1=Q 10.
Bxh1
21 3.906 +0.000 4842801 Bd5 c4 2. Bh1 a4 3. Bf3 a3 4. Be4 c3 5. Bf3 d5 6.
Bxd5 e4 7. Bxe4 f3 8. Bxf3 g2 9. Bxg2 h1=Q 10.
Bxh1 {ht}
21 4.006 +0.000 4988031 Bd5 c4 2. Bh1 a4 3. Bf3 a3 4. Be4 c3 5. Bf3 d5 6.
Bxd5 e4 7. Bxe4 f3 8. Bxf3 g2 9. Bxg2 h1=Q 10.
Bxh1 {ht}
22 5.428 +0.000 6825833 Bd5 c4 2. Bh1 a4 3. Bf3 a3 4. Be4 c3 5. Bf3 d5 6.
Bxd5 e4 7. Bxe4 f3 8. Bxf3 g2 9. Bxg2 h1=Q 10.
Bxh1 {ht}
22 5.548 +0.000 7009259 Bd5 c4 2. Bh1 a4 3. Bf3 a3 4. Be4 c3 5. Bf3 d5 6.
Bxd5 e4 7. Bxe4 f3 8. Bxf3 g2 9. Bxg2 h1=Q 10.
Bxh1 {ht}
23 7.982 +0.000 9763058 Bd5 c4 2. Bh1 a4 3. Bf3 a3 4. Be4 c3 5. Bf3 d5 6.
Bxd5 e4 7. Bxe4 f3 8. Bxf3 g2 9. Bxg2 h1=Q 10.
Bxh1 {ht}
23 8.142 +0.000 10005k Bd5 c4 2. Bh1 a4 3. Bf3 a3 4. Be4 c3 5. Bf3 d5 6.
Bxd5 e4 7. Bxe4 f3 8. Bxf3 g2 9. Bxg2 h1=Q 10.
Bxh1 {ht}
24 11.006 +0.000 13945k Bd5 c4 2. Bh1 a4 3. Bf3 a3 4. Be4 c3 5. Bf3 d5 6.
Bxd5 e4 7. Bxe4 f3 8. Bxf3 g2 9. Bxg2 h1=Q 10.
Bxh1 {ht}
24 11.216 +0.000 14278k Bd5 c4 2. Bh1 a4 3. Bf3 a3 4. Be4 c3 5. Bf3 d5 6.
Bxd5 e4 7. Bxe4 f3 8. Bxf3 g2 9. Bxg2 h1=Q 10.
Bxh1 {ht}
25 15.202 +0.000 19841k Bd5 c4 2. Bh1 a4 3. Bf3 a3 4. Be4 c3 5. Bf3 d5 6.
Bxd5 e4 7. Bxe4 f3 8. Bxf3 g2 9. Bxg2 h1=Q 10.
Bxh1 {ht}
25 15.493 +0.000 20288k Bd5 c4 2. Bh1 a4 3. Bf3 a3 4. Be4 c3 5. Bf3 d5 6.
Bxd5 e4 7. Bxe4 f3 8. Bxf3 g2 9. Bxg2 h1=Q 10.
Bxh1 {ht}
26 21.201 +0.000 28273k Bd5 c4 2. Bh1 a4 3. Bf3 a3 4. Be4 c3 5. Bf3 d5 6.
Bxd5 e4 7. Bxe4 f3 8. Bxf3 g2 9. Bxg2 h1=Q 10.
Bxh1 {ht}
26 21.651 +0.000 28939k Bd5 c4 2. Bh1 a4 3. Bf3 a3 4. Be4 c3 5. Bf3 d5 6.
Bxd5 e4 7. Bxe4 f3 8. Bxf3 g2 9. Bxg2 h1=Q 10.
Bxh1 {ht}
27 29.232 +0.000 39715k Bd5 c4 2. Bh1 a4 3. Bf3 a3 4. Be4 c3 5. Bf3 d5 6.
Bxd5 e4 7. Bxe4 f3 8. Bxf3 g2 9. Bxg2 h1=Q 10.
Bxh1 {ht}
27 29.823 +0.000 40600k Bd5 c4 2. Bh1 a4 3. Bf3 a3 4. Be4 c3 5. Bf3 d5 6.
Bxd5 e4 7. Bxe4 f3 8. Bxf3 g2 9. Bxg2 h1=Q 10.
Bxh1 {ht}
28 40.318 +0.000 55227k Bd5 c4 2. Bh1 a4 3. Bf3 a3 4. Be4 c3 5. Bf3 d5 6.
Bxd5 e4 7. Bxe4 f3 8. Bxf3 g2 9. Bxg2 h1=Q 10.
Bxh1 {ht}
28 41.220 +0.000 56569k Bd5 c4 2. Bh1 a4 3. Bf3 a3 4. Be4 c3 5. Bf3 d5 6.
Bxd5 e4 7. Bxe4 f3 8. Bxf3 g2 9. Bxg2 h1=Q 10.
Bxh1 {ht}
29 55.720 +0.000 77553k Bd5 c4 2. Bh1 a4 3. Bf3 a3 4. Be4 c3 5. Bf3 d5 6.
Bxd5 e4 7. Bxe4 f3 8. Bxf3 g2 9. Bxg2 h1=Q 10.
Bxh1 {ht}
29 57.062 +0.000 79499k Bd5 c4 2. Bh1 a4 3. Bf3 a3 4. Be4 c3 5. Bf3 d5 6.
Bxd5 e4 7. Bxe4 f3 8. Bxf3 g2 9. Bxg2 h1=Q 10.
Bxh1 {ht}
Analyse>exit
local: t=58.224 nps=1394795.3 n=81210564 (53.1% / 46.9%)
total: t=2:07.40 nps=1294101.1 n=164872369
stats: fh=97.0%/1.19%/0.578% draws=490921
trans: probes=42596650 hits=18651755 (43.79%) draft=12665005 (29.73%)
tcuts: exact=1254 (0.00%) upper=5588687 (13.12%) lower=6721132 (15.78%)
tstor: exact=592 (0.01%) upper=4387470 (43.06%) lower=5801453 (56.94%)
ext: check=1625735 recap=1111 ppush=284137 1rep=177913 thrt=623763
q-moves: gen=11180939 tested=7588815 made/un=48422 max-dep=5
max eval diff: part-1=11.704 part-2=1.511
Cheers, Tim.
This page took 0 seconds to execute
Last modified: Thu, 15 Apr 21 08:11:13 -0700
Current Computer Chess Club Forums at Talkchess. This site by Sean Mintz.