Author: Robert Hyatt
Date: 21:48:48 01/16/03
Go up one level in this thread
On January 16, 2003 at 20:29:54, Omid David Tabibi wrote: >[D] 4k3/8/8/p1p1p1p1/PpPpPpPp/1P1P1P1P/8/4K3 w - - 0 1 > >At the above position, some programs (e.g. Fritz, Hiarcs, Crafty) reach their >maximum depth in a second or two (see the Crafty analysis below), while others >(e.g. Tiger, Shredder) need more time as they search deeper (Tiger for example >quickly reaches depth 20, and then slowly goes deeper and deeper, see the Tiger >analysis below. For Genesis it takes about 4 minutes to reach depth 60). What is >different in the former class which enables them to quickly reach the max depth? > This is a hashing problem. There are not many unique positions, so hashing should cause the search to be very efficient... nothing but king moves helps this even more. >Another interesting point is that Crafty (and many others) gradually reduce the >score as they searches deeper (in the below log you can see that at depth 47 >Crafty gives the score 0), while some others like Tiger, remain with their fixed >score (-0.24 in the log below). Based on what factors is the score reduced in >Crafty? > Probably draw by repetition. The side that is behind won't move his king very far from the original square. The other side will try every possible square but after 40+ plies he runs out of new squares and the other side can force a repetition. >============================================================================== > >Analysis by Crafty 19.01: > >1.Ke2 > µ (-1.10) Depth: 1/2 00:00:00 >1.Ke2 Kd7 > µ (-1.30) Depth: 2/2 00:00:00 >1.Ke2 Kd7 2.Kd2 > µ (-1.30) Depth: 3/3 00:00:00 >1.Ke2 Kd7 2.Kd2 Kd6 > µ (-1.40) Depth: 4/4 00:00:00 >1.Ke2 Kd7 2.Kd2 Kd6 3.Ke2 > µ (-1.40) Depth: 5/5 00:00:00 >1.Ke2 Kd7 2.Kd2 Kd6 3.Ke2 Ke6 > µ (-1.40) Depth: 6/6 00:00:00 >1.Ke2 Kd7 2.Kd2 Kd6 3.Ke2 Ke6 4.Kd2 > µ (-1.40) Depth: 7/7 00:00:00 >1.Ke2 Kd7 2.Kd2 Kd6 3.Ke2 Ke6 4.Kd2 Kd6 > µ (-1.40) Depth: 8/8 00:00:00 1kN >1.Ke2 Kd7 2.Kd2 Kd6 3.Ke2 Ke7 4.Kd2 Ke6 5.Ke2 > µ (-1.40) Depth: 9/9 00:00:00 1kN >1.Ke2 Kd7 2.Kd2 Kd6 3.Ke2 Ke7 4.Kd2 Ke6 5.Ke2 Kd6 > µ (-1.40) Depth: 10/10 00:00:00 2kN >1.Ke2 Kd7 2.Kd2 Kd6 3.Ke2 Ke7 4.Kd2 Ke6 5.Ke2 Kd6 6.Kd2 > µ (-1.40) Depth: 11/11 00:00:00 3kN >1.Ke2 Kd7 2.Kd2 Kd6 3.Ke2 Ke7 4.Kd2 Ke6 5.Ke2 Kd6 6.Kd2 Ke6 > µ (-1.40) Depth: 12/12 00:00:00 3kN >1.Ke2 Kd7 2.Kd2 Kd6 3.Ke2 Ke7 4.Kd2 Ke6 5.Ke2 Kd6 6.Kd2 Ke7 7.Ke2 > µ (-1.30) Depth: 13/13 00:00:00 4kN >1.Ke2 Kd7 2.Kd2 Kd6 3.Ke1 Kc6 4.Kd2 Kc7 5.Ke2 Kb6 > µ (-1.30) Depth: 14/14 00:00:00 6kN >1.Ke2 Kd7 2.Kd2 Kd6 3.Ke1 Kc6 4.Kd2 Kc7 5.Ke2 Kb6 > µ (-1.30) Depth: 15/15 00:00:00 7kN >1.Ke2 Kd7 2.Kd2 Kd6 3.Ke1 Kc6 4.Kd2 Kc7 5.Ke2 Kb6 > µ (-1.30) Depth: 16/16 00:00:00 8kN >1.Ke2 Kd7 2.Kd2 Kd6 3.Ke1 Kc6 4.Kd2 Kc7 5.Ke2 Kb6 6.Kd2 Ka6 7.Ke2 Kb7 8.Kd2 Kc6 >9.Ke2 > µ (-1.30) Depth: 17/17 00:00:00 9kN >1.Ke2 Kd7 2.Kd2 Kd6 3.Ke1 Kc6 4.Kd2 Kc7 5.Ke2 Kb6 6.Kd2 Ka6 7.Ke2 Kb7 8.Ke1 Kc8 >9.Ke2 Kd7 > µ (-1.30) Depth: 18/18 00:00:00 10kN >1.Ke2 Kd7 2.Kd2 Kd6 3.Ke1 Kc6 4.Kd2 Kc7 5.Ke2 Kb6 6.Kd2 Kc6 7.Ke2 Kc7 8.Ke1 Kd6 >9.Ke2 > µ (-1.30) Depth: 19/19 00:00:00 12kN >1.Ke2 Kd7 2.Kd2 Kd6 3.Ke1 Kc6 4.Kd2 Kc7 5.Ke2 Kb6 6.Kd2 Kc6 7.Ke2 Kc7 8.Kd1 Kb7 >9.Ke1 Kc8 10.Ke2 Kd7 > µ (-1.30) Depth: 20/20 00:00:00 13kN >1.Ke2 Kd7 2.Kd2 Kd6 3.Ke1 Kc6 4.Kd2 Kc7 5.Ke2 Kb6 6.Kd2 Kc6 7.Ke2 Kc7 8.Kd1 Kc8 >9.Ke1 Kd8 10.Ke2 Ke7 11.Kd2 > µ (-1.30) Depth: 21/21 00:00:00 14kN >1.Ke2 Kd7 2.Kd2 Kd6 3.Ke2 Ke7 4.Kd2 Ke6 5.Ke2 Kf6 6.Ke1 Kg6 7.Ke2 Kf7 8.Kd1 Kg7 >9.Kd2 Kf8 10.Ke2 Ke8 11.Kd2 Kd7 > µ (-1.30) Depth: 22/22 00:00:00 19kN >1.Ke2 Kd7 2.Kd2 Kd6 3.Ke2 Ke7 4.Kd2 Ke6 5.Ke2 Kf6 6.Ke1 Kg6 7.Ke2 Kf7 8.Kd1 Kg7 >9.Kd2 Kf8 10.Ke2 Ke8 11.Kd2 Kd7 12.Ke2 > µ (-1.30) Depth: 23/23 00:00:00 20kN >1.Ke2 Kd7 2.Kd2 Kd6 3.Ke2 Ke7 4.Kd2 Ke6 5.Ke2 Kf6 6.Ke1 Kg6 7.Ke2 Kf7 8.Kd1 Kg7 >9.Kd2 Kf8 10.Ke2 Ke8 11.Ke1 Kd8 12.Ke2 Ke7 > µ (-1.30) Depth: 24/24 00:00:01 21kN >1.Ke2 Kd7 2.Kd2 Kd6 3.Ke2 Ke7 4.Kd2 Ke6 5.Ke2 Kd6 6.Kd2 Ke7 7.Ke2 Kd8 8.Ke1 Kc8 >9.Ke2 Kc7 10.Kd2 Kb7 11.Ke2 Kb6 12.Kd2 Kc6 13.Ke2 > µ (-1.30) Depth: 25/25 00:00:01 24kN >1.Ke2 Kd7 2.Kd2 Kd6 3.Ke2 Ke7 4.Kd2 Ke6 5.Ke2 Kd6 6.Kd2 Ke7 7.Ke2 Kd8 8.Ke1 Kc7 >9.Ke2 Kb6 10.Kd2 Kb7 11.Ke2 Kc8 12.Ke1 Kd8 13.Ke2 Ke7 > µ (-1.30) Depth: 26/26 00:00:01 25kN >1.Ke2 Kd7 2.Kd2 Kd6 3.Ke2 Ke7 4.Kd2 Ke6 5.Ke2 Kd6 6.Kd2 Ke7 7.Ke2 Kd8 8.Ke1 Kc7 >9.Ke2 Kb6 10.Kd2 Kb7 11.Ke2 Kc8 12.Ke1 Kd8 13.Ke2 Kc7 14.Kd2 > µ (-1.20) Depth: 27/27 00:00:01 28kN >1.Ke2 Kd7 2.Kd2 Kd6 3.Ke2 Ke7 4.Kd2 Ke6 5.Ke2 Kd6 6.Kd2 Ke7 7.Ke2 Kd8 8.Ke1 Kc7 >9.Ke2 Kb6 10.Kd2 Kb7 11.Kd1 Kc8 12.Ke2 Kb8 13.Kd2 Ka7 14.Ke2 Kb6 > µ (-1.20) Depth: 28/28 00:00:01 29kN >1.Ke2 Kd7 2.Kd2 Kd6 3.Ke2 Ke7 4.Kd2 Ke6 5.Ke2 Kd6 6.Kd2 Ke7 7.Ke2 Kd8 8.Ke1 Kc7 >9.Ke2 Kb6 10.Kd2 Kb7 11.Kd1 Kc8 12.Ke2 Kc7 13.Kd2 Kd7 14.Ke2 Kc6 15.Kd2 > µ (-1.30) Depth: 29/29 00:00:01 34kN >1.Ke2 Kd7 2.Kd2 Kd6 3.Ke2 Ke7 4.Kd2 Ke6 5.Ke2 Kd6 6.Kd2 Ke7 7.Ke2 Kd8 8.Ke1 Kc7 >9.Ke2 Kb6 10.Kd2 Kb7 11.Kd1 Kc8 12.Ke2 Kc7 13.Kd2 Kb6 14.Kd1 Kb7 15.Ke2 Kc6 > µ (-1.30) Depth: 30/30 00:00:01 35kN >1.Ke2 Kd7 2.Kd2 Kd6 3.Ke2 Ke7 4.Kd2 Ke6 5.Ke2 Kd6 6.Kd2 Ke7 7.Ke2 Kd8 8.Ke1 Kc7 >9.Ke2 Kb6 10.Kd2 Kb7 11.Kd1 Kc8 12.Ke2 Kc7 13.Kd2 Kd7 14.Ke2 Ke6 15.Kf2 Kd7 >16.Ke2 > µ (-1.30) Depth: 31/31 00:00:01 37kN >1.Ke2 Kd7 2.Kd2 Kd6 3.Ke2 Ke7 4.Kd2 Ke6 5.Ke2 Kd6 6.Kd2 Ke7 7.Ke2 Kd8 8.Ke1 Kc7 >9.Ke2 Kb6 10.Kd2 Kb7 11.Kd1 Kc8 12.Ke2 Kc7 13.Kd2 Kb6 14.Kd1 Kb7 15.Ke2 Kc8 >16.Kd2 Kd7 > µ (-1.30) Depth: 32/32 00:00:01 38kN >1.Ke2 Kd7 2.Kd2 Kd6 3.Ke2 Ke7 4.Kd2 Kd8 5.Ke2 Kc7 6.Kd2 Kb6 7.Kd1 Kb7 8.Ke2 Kc8 >9.Kd2 Kd7 10.Ke2 > µ (-1.30) Depth: 33/33 00:00:01 42kN >1.Ke2 Kd7 2.Kd2 Kd6 3.Ke2 Ke7 4.Kd2 Kd8 5.Ke2 Kc7 6.Kd2 Kb6 7.Kd1 Kb7 8.Ke2 Kc8 >9.Kd2 Kd7 10.Ke2 Ke6 11.Kf2 Kf7 12.Ke2 Kf8 > µ (-1.30) Depth: 34/34 00:00:01 43kN >1.Ke2 Kd7 2.Kd2 Kd6 3.Ke2 Ke7 4.Kd2 Kd8 5.Ke2 Kc7 6.Kd2 Kb6 7.Kd1 Kb7 8.Ke2 Kc8 >9.Kd2 Kd7 10.Ke2 Kc6 11.Kf2 Kc7 12.Ke2 Kb7 13.Kd2 Kc8 14.Ke2 Kb8 15.Kd2 Ka7 >16.Ke2 Ka6 > µ (-1.10) Depth: 35/34 00:00:01 47kN >1.Ke2 Kd7 2.Kd2 Kd6 3.Ke2 Ke7 4.Kd2 Kd8 5.Ke2 Kc7 6.Kd2 Kb6 7.Kd1 Kb7 8.Ke2 Kc6 >9.Kf2 Kd7 10.Ke2 > µ (-1.20) Depth: 36/36 00:00:01 54kN >1.Ke2 Kd7 2.Kd2 Kd6 3.Ke2 Ke7 4.Kd2 Kd8 5.Ke2 Kc7 6.Kd2 Kb6 7.Kd1 Kb7 8.Ke2 Kc6 >9.Kf2 Kd7 10.Ke2 > µ (-0.80) Depth: 37/37 00:00:01 57kN >1.Ke2 Kd7 2.Kd2 Kd6 3.Ke2 Ke7 4.Kd2 Kd8 5.Ke2 Kc7 6.Kd2 Kb6 7.Kd1 Kb7 8.Ke2 Kb8 >9.Kd2 Kc7 10.Kd1 Kb6 11.Kd2 Ka6 12.Kc1 Kb7 13.Kd2 > µ (-1.20) Depth: 38/38 00:00:01 65kN >1.Ke2 Kd7 2.Kd2 Kd6 3.Ke2 Ke7 4.Kd2 Kd8 5.Ke2 Kc7 6.Kd2 Kb6 7.Kd1 Kb7 8.Ke2 Kb8 >9.Kd2 Kc7 10.Kd1 Kb6 11.Kd2 Ka6 12.Kc1 Kb7 13.Kd2 > µ (-0.80) Depth: 39/39 00:00:01 71kN >1.Ke2 Kd7 2.Kd2 Kd6 3.Ke2 Ke7 4.Kd2 Ke6 5.Ke1 Kf6 6.Kd2 Ke7 7.Ke1 Ke6 8.Ke2 Kd6 > µ (-1.20) Depth: 40/40 00:00:01 79kN >1.Ke2 Kd7 2.Kd2 Kd6 3.Ke2 Ke7 4.Kd2 Ke6 5.Ke1 Kf6 6.Kd2 Ke7 7.Ke1 Ke6 8.Ke2 Kd6 >9.Kf1 Kc7 10.Ke2 Kc8 11.Kf1 Kd8 12.Ke2 Ke8 > µ (-1.20) Depth: 41/41 00:00:01 80kN >1.Ke2 Kd7 2.Kd2 Kd6 3.Ke2 Ke7 4.Kd2 Ke6 5.Ke1 Kf6 6.Kd2 Ke7 7.Ke1 Ke6 8.Ke2 Kf7 >9.Kd1 Kg6 10.Ke2 Kg7 11.Kd2 Kf8 12.Ke2 Ke8 > µ (-1.20) Depth: 42/41 00:00:01 83kN >1.Ke2 Kd7 2.Kd2 Kd6 3.Ke2 Ke7 4.Kd2 Ke6 5.Ke1 Kf7 6.Kd2 Ke7 > µ (-1.20) Depth: 43/42 00:00:01 85kN >1.Ke2 Kd7 2.Kd2 Kd6 3.Ke2 Ke7 4.Kd2 Ke6 5.Ke1 Kf7 6.Kd2 Ke7 > µ (-0.80) Depth: 44/42 00:00:01 87kN >1.Ke2 Kd7 2.Kd2 Kd6 3.Ke2 Ke7 4.Kd2 Ke6 5.Ke1 Kf7 6.Kd2 Ke7 > ³ (-0.41) Depth: 45/42 00:00:01 93kN >1.Ke2 Kd7 2.Kd2 Kd6 3.Ke2 Ke7 4.Kd2 Ke6 5.Ke1 Kf7 6.Kd2 Ke7 > = (-0.02) Depth: 46/46 00:00:01 98kN >1.Ke2 Kd7 2.Kd2 Kd6 3.Ke2 Ke7 4.Kd2 Ke6 5.Ke1 Kf7 6.Kd2 Ke7 7.Ke1 Ke6 8.Ke2 Kd6 >9.Ke1 Kc7 10.Ke2 Kd6 > = (0.00) Depth: 47/46 00:00:01 104kN >1.Ke2 Kd7 2.Kd2 Kd6 3.Ke2 Ke7 4.Kd2 Ke6 5.Ke1 Kf7 6.Kd2 Ke7 7.Ke1 Ke6 8.Ke2 Kd6 >9.Ke1 Kc7 10.Ke2 Kd6 > = (0.00) Depth: 48/48 00:00:01 105kN >1.Ke2 Kd7 2.Kd2 Kd6 3.Ke2 Ke7 4.Kd2 Ke6 5.Ke1 Kf7 6.Kd2 Ke7 7.Ke1 Ke6 8.Ke2 Kd6 >9.Ke1 Kc7 10.Ke2 Kd6 > = (0.00) Depth: 49/48 00:00:01 106kN >1.Ke2 Kd7 2.Kd2 Kd6 3.Ke2 Ke7 4.Kd2 Ke6 5.Ke1 Kf7 6.Kd2 Ke7 7.Ke1 Ke6 8.Ke2 Kd6 >9.Ke1 Kc7 10.Ke2 Kd6 > = (0.00) Depth: 50/48 00:00:01 107kN >1.Ke2 Kd7 2.Kd2 Kd6 3.Ke2 Ke7 4.Kd2 Ke6 5.Ke1 Kf7 6.Kd2 Ke7 7.Ke1 Ke6 8.Ke2 Kd6 >9.Ke1 Kc7 10.Ke2 Kd6 > = (0.00) Depth: 51/48 00:00:01 108kN >1.Ke2 Kd7 2.Kd2 Kd6 3.Ke2 Ke7 4.Kd2 Ke6 5.Ke1 Kf7 6.Kd2 Ke7 7.Ke1 Ke6 8.Ke2 Kd6 >9.Ke1 Kc7 10.Ke2 Kd6 > = (0.00) Depth: 52/48 00:00:01 109kN >1.Ke2 Kd7 2.Kd2 Kd6 3.Ke2 Ke7 4.Kd2 Ke6 5.Ke1 Kf7 6.Kd2 Ke7 7.Ke1 Ke6 8.Ke2 Kd6 >9.Ke1 Kc7 10.Ke2 Kd6 > = (0.00) Depth: 53/48 00:00:01 110kN >1.Ke2 Kd7 2.Kd2 Kd6 3.Ke2 Ke7 4.Kd2 Ke6 5.Ke1 Kf7 6.Kd2 Ke7 7.Ke1 Ke6 8.Ke2 Kd6 >9.Ke1 Kc7 10.Ke2 Kd6 > = (0.00) Depth: 54/48 00:00:01 110kN >1.Ke2 Kd7 2.Kd2 Kd6 3.Ke2 Ke7 4.Kd2 Ke6 5.Ke1 Kf7 6.Kd2 Ke7 7.Ke1 Ke6 8.Ke2 Kd6 >9.Ke1 Kc7 10.Ke2 Kd6 > = (0.00) Depth: 55/48 00:00:01 111kN >1.Ke2 Kd7 2.Kd2 Kd6 3.Ke2 Ke7 4.Kd2 Ke6 5.Ke1 Kf7 6.Kd2 Ke7 7.Ke1 Ke6 8.Ke2 Kd6 >9.Ke1 Kc7 10.Ke2 Kd6 > = (0.00) Depth: 56/48 00:00:01 112kN >1.Ke2 Kd7 2.Kd2 Kd6 3.Ke2 Ke7 4.Kd2 Ke6 5.Ke1 Kf7 6.Kd2 Ke7 7.Ke1 Ke6 8.Ke2 Kd6 >9.Ke1 Kc7 10.Ke2 Kd6 > = (0.00) Depth: 57/48 00:00:01 113kN >1.Ke2 Kd7 2.Kd2 Kd6 3.Ke2 Ke7 4.Kd2 Ke6 5.Ke1 Kf7 6.Kd2 Ke7 7.Ke1 Ke6 8.Ke2 Kd6 >9.Ke1 Kc7 10.Ke2 Kd6 > = (0.00) Depth: 58/48 00:00:01 114kN >1.Ke2 Kd7 2.Kd2 Kd6 3.Ke2 Ke7 4.Kd2 Ke6 5.Ke1 Kf7 6.Kd2 Ke7 7.Ke1 Ke6 8.Ke2 Kd6 >9.Ke1 Kc7 10.Ke2 Kd6 > = (0.00) Depth: 59/48 00:00:01 115kN >1.Ke2 Kd7 2.Kd2 Kd6 3.Ke2 Ke7 4.Kd2 Ke6 5.Ke1 Kf7 6.Kd2 Ke7 7.Ke1 Ke6 8.Ke2 Kd6 >9.Ke1 Kc7 10.Ke2 Kd6 > = (0.00) Depth: 60/48 00:00:01 116kN > >(David Tabibi, Tel-Aviv 17.01.2003) > >============================================================================== > >Analysis by Chess Tiger 14.0: > >1.Kd2 Ke7 2.Ke2 Kd6 3.Kd2 Kc6 4.Ke2 Kc7 5.Kd2 Kd6 6.Ke2 Ke7 7.Kd2 Kf6 8.Ke2 Kf7 >9.Kd2 Ke6 > = (-0.24) Depth: 19 00:00:00 158kN >1.Kd2 Ke7 2.Ke2 Kd6 3.Kd2 Kc6 4.Ke2 Kc7 5.Kd2 Kd6 6.Ke2 Kc6 7.Kd2 Kd7 8.Ke2 Ke7 >9.Kd2 Kf6 10.Ke2 > = (-0.24) Depth: 19 00:00:00 195kN >1.Kd2 Ke7 2.Ke2 Kd6 3.Kd2 Kc6 4.Ke2 Kc7 5.Kd2 Kd6 6.Ke2 Kc6 7.Kd2 Kd7 8.Ke2 Ke7 >9.Kd1 Kf6 10.Ke2 Ke6 > = (-0.24) Depth: 20 00:00:01 552kN >1.Kd2 Ke7 2.Ke2 Kd6 3.Kd2 Kc6 4.Ke2 Kc7 5.Kd2 Kd7 6.Ke2 Kc8 7.Kd2 Kd8 8.Ke2 Ke7 >9.Kd2 Kf7 10.Ke2 Kf6 > = (-0.24) Depth: 21 00:00:02 921kN >1.Kd2 Ke7 2.Ke2 Kd6 3.Kd2 Kc6 4.Ke2 Kc7 5.Kd2 Kd7 6.Ke2 Ke7 7.Kd2 Kf8 8.Ke2 Kf7 >9.Kd2 Kg7 10.Ke2 Kf6 > = (-0.24) Depth: 22 00:00:04 1759kN >1.Kd2 Ke7 2.Ke2 Kd6 3.Kd2 Kc6 4.Ke2 Kc7 5.Kd2 Kd7 6.Ke2 Ke7 7.Ke1 Kf7 8.Kd1 Kg6 >9.Kd2 Kh6 10.Ke2 Kg7 > = (-0.24) Depth: 23 00:00:08 3424kN >1.Kd2 Ke7 2.Ke2 Kd6 3.Kd2 Kc6 4.Ke2 Kc7 5.Kd2 Kd7 6.Ke2 Ke7 7.Kd1 Kf6 8.Ke2 Kg7 >9.Kd2 Kf8 10.Ke2 Kg8 > = (-0.24) Depth: 24 00:00:17 6771kN >1.Kd2 Ke7 2.Ke2 Kd6 3.Kd2 Kc6 4.Ke2 Kc7 5.Kd2 Kd7 6.Ke2 Ke7 7.Kd2 Ke8 8.Ke2 Kf7 >9.Kd2 Kg6 10.Ke2 Kh6 > = (-0.24) Depth: 25 00:00:35 13930kN >1.Kd2 Ke7 2.Ke2 Kd6 3.Kd2 Kc6 4.Ke2 Kc7 5.Kd2 Kd7 6.Ke2 Ke7 7.Kd1 Kf8 8.Kd2 Ke8 >9.Ke2 Kf7 10.Kd2 Kg6 > = (-0.24) Depth: 26 00:01:09 26869kN >1.Kd2 Ke7 2.Ke2 Kd6 3.Kd2 Kc6 4.Ke2 Kc7 5.Kd2 Kd7 6.Ke2 Ke7 7.Kd2 Kf7 8.Ke2 Kf8 >9.Kd2 Kg7 10.Ke2 Kh6 > = (-0.24) Depth: 27 00:02:13 50982kN >1.Kd2 Ke7 2.Ke2 Kd6 3.Kd2 Kc6 4.Ke2 Kc7 5.Kd2 Kb6 6.Ke2 Kc6 7.Kd2 Kd7 8.Ke2 Ke7 >9.Kd1 Kf7 10.Ke2 Kg6 > = (-0.24) Depth: 28 00:03:37 84351kN > >(David Tabibi, Tel-Aviv 17.01.2003)
This page took 0 seconds to execute
Last modified: Thu, 15 Apr 21 08:11:13 -0700
Current Computer Chess Club Forums at Talkchess. This site by Sean Mintz.