Computer Chess Club Archives


Search

Terms

Messages

Subject: Re: Endgame speed and evaluation

Author: Robert Hyatt

Date: 21:48:48 01/16/03

Go up one level in this thread


On January 16, 2003 at 20:29:54, Omid David Tabibi wrote:

>[D] 4k3/8/8/p1p1p1p1/PpPpPpPp/1P1P1P1P/8/4K3 w - - 0 1
>
>At the above position, some programs (e.g. Fritz, Hiarcs, Crafty) reach their
>maximum depth in a second or two (see the Crafty analysis below), while others
>(e.g. Tiger, Shredder) need more time as they search deeper (Tiger for example
>quickly reaches depth 20, and then slowly goes deeper and deeper, see the Tiger
>analysis below. For Genesis it takes about 4 minutes to reach depth 60). What is
>different in the former class which enables them to quickly reach the max depth?
>

This is a hashing problem.  There are not many unique positions, so hashing
should cause the search to be very efficient...  nothing but king moves helps
this even more.


>Another interesting point is that Crafty (and many others) gradually reduce the
>score as they searches deeper (in the below log you can see that at depth 47
>Crafty gives the score 0), while some others like Tiger, remain with their fixed
>score (-0.24 in the log below). Based on what factors is the score reduced in
>Crafty?
>

Probably draw by repetition.  The side that is behind won't move his king very
far from the original square.  The other side will try every possible square
but after 40+ plies he runs out of new squares and the other side can force a
repetition.

>==============================================================================
>
>Analysis by Crafty 19.01:
>
>1.Ke2
>  µ  (-1.10)   Depth: 1/2   00:00:00
>1.Ke2 Kd7
>  µ  (-1.30)   Depth: 2/2   00:00:00
>1.Ke2 Kd7 2.Kd2
>  µ  (-1.30)   Depth: 3/3   00:00:00
>1.Ke2 Kd7 2.Kd2 Kd6
>  µ  (-1.40)   Depth: 4/4   00:00:00
>1.Ke2 Kd7 2.Kd2 Kd6 3.Ke2
>  µ  (-1.40)   Depth: 5/5   00:00:00
>1.Ke2 Kd7 2.Kd2 Kd6 3.Ke2 Ke6
>  µ  (-1.40)   Depth: 6/6   00:00:00
>1.Ke2 Kd7 2.Kd2 Kd6 3.Ke2 Ke6 4.Kd2
>  µ  (-1.40)   Depth: 7/7   00:00:00
>1.Ke2 Kd7 2.Kd2 Kd6 3.Ke2 Ke6 4.Kd2 Kd6
>  µ  (-1.40)   Depth: 8/8   00:00:00  1kN
>1.Ke2 Kd7 2.Kd2 Kd6 3.Ke2 Ke7 4.Kd2 Ke6 5.Ke2
>  µ  (-1.40)   Depth: 9/9   00:00:00  1kN
>1.Ke2 Kd7 2.Kd2 Kd6 3.Ke2 Ke7 4.Kd2 Ke6 5.Ke2 Kd6
>  µ  (-1.40)   Depth: 10/10   00:00:00  2kN
>1.Ke2 Kd7 2.Kd2 Kd6 3.Ke2 Ke7 4.Kd2 Ke6 5.Ke2 Kd6 6.Kd2
>  µ  (-1.40)   Depth: 11/11   00:00:00  3kN
>1.Ke2 Kd7 2.Kd2 Kd6 3.Ke2 Ke7 4.Kd2 Ke6 5.Ke2 Kd6 6.Kd2 Ke6
>  µ  (-1.40)   Depth: 12/12   00:00:00  3kN
>1.Ke2 Kd7 2.Kd2 Kd6 3.Ke2 Ke7 4.Kd2 Ke6 5.Ke2 Kd6 6.Kd2 Ke7 7.Ke2
>  µ  (-1.30)   Depth: 13/13   00:00:00  4kN
>1.Ke2 Kd7 2.Kd2 Kd6 3.Ke1 Kc6 4.Kd2 Kc7 5.Ke2 Kb6
>  µ  (-1.30)   Depth: 14/14   00:00:00  6kN
>1.Ke2 Kd7 2.Kd2 Kd6 3.Ke1 Kc6 4.Kd2 Kc7 5.Ke2 Kb6
>  µ  (-1.30)   Depth: 15/15   00:00:00  7kN
>1.Ke2 Kd7 2.Kd2 Kd6 3.Ke1 Kc6 4.Kd2 Kc7 5.Ke2 Kb6
>  µ  (-1.30)   Depth: 16/16   00:00:00  8kN
>1.Ke2 Kd7 2.Kd2 Kd6 3.Ke1 Kc6 4.Kd2 Kc7 5.Ke2 Kb6 6.Kd2 Ka6 7.Ke2 Kb7 8.Kd2 Kc6
>9.Ke2
>  µ  (-1.30)   Depth: 17/17   00:00:00  9kN
>1.Ke2 Kd7 2.Kd2 Kd6 3.Ke1 Kc6 4.Kd2 Kc7 5.Ke2 Kb6 6.Kd2 Ka6 7.Ke2 Kb7 8.Ke1 Kc8
>9.Ke2 Kd7
>  µ  (-1.30)   Depth: 18/18   00:00:00  10kN
>1.Ke2 Kd7 2.Kd2 Kd6 3.Ke1 Kc6 4.Kd2 Kc7 5.Ke2 Kb6 6.Kd2 Kc6 7.Ke2 Kc7 8.Ke1 Kd6
>9.Ke2
>  µ  (-1.30)   Depth: 19/19   00:00:00  12kN
>1.Ke2 Kd7 2.Kd2 Kd6 3.Ke1 Kc6 4.Kd2 Kc7 5.Ke2 Kb6 6.Kd2 Kc6 7.Ke2 Kc7 8.Kd1 Kb7
>9.Ke1 Kc8 10.Ke2 Kd7
>  µ  (-1.30)   Depth: 20/20   00:00:00  13kN
>1.Ke2 Kd7 2.Kd2 Kd6 3.Ke1 Kc6 4.Kd2 Kc7 5.Ke2 Kb6 6.Kd2 Kc6 7.Ke2 Kc7 8.Kd1 Kc8
>9.Ke1 Kd8 10.Ke2 Ke7 11.Kd2
>  µ  (-1.30)   Depth: 21/21   00:00:00  14kN
>1.Ke2 Kd7 2.Kd2 Kd6 3.Ke2 Ke7 4.Kd2 Ke6 5.Ke2 Kf6 6.Ke1 Kg6 7.Ke2 Kf7 8.Kd1 Kg7
>9.Kd2 Kf8 10.Ke2 Ke8 11.Kd2 Kd7
>  µ  (-1.30)   Depth: 22/22   00:00:00  19kN
>1.Ke2 Kd7 2.Kd2 Kd6 3.Ke2 Ke7 4.Kd2 Ke6 5.Ke2 Kf6 6.Ke1 Kg6 7.Ke2 Kf7 8.Kd1 Kg7
>9.Kd2 Kf8 10.Ke2 Ke8 11.Kd2 Kd7 12.Ke2
>  µ  (-1.30)   Depth: 23/23   00:00:00  20kN
>1.Ke2 Kd7 2.Kd2 Kd6 3.Ke2 Ke7 4.Kd2 Ke6 5.Ke2 Kf6 6.Ke1 Kg6 7.Ke2 Kf7 8.Kd1 Kg7
>9.Kd2 Kf8 10.Ke2 Ke8 11.Ke1 Kd8 12.Ke2 Ke7
>  µ  (-1.30)   Depth: 24/24   00:00:01  21kN
>1.Ke2 Kd7 2.Kd2 Kd6 3.Ke2 Ke7 4.Kd2 Ke6 5.Ke2 Kd6 6.Kd2 Ke7 7.Ke2 Kd8 8.Ke1 Kc8
>9.Ke2 Kc7 10.Kd2 Kb7 11.Ke2 Kb6 12.Kd2 Kc6 13.Ke2
>  µ  (-1.30)   Depth: 25/25   00:00:01  24kN
>1.Ke2 Kd7 2.Kd2 Kd6 3.Ke2 Ke7 4.Kd2 Ke6 5.Ke2 Kd6 6.Kd2 Ke7 7.Ke2 Kd8 8.Ke1 Kc7
>9.Ke2 Kb6 10.Kd2 Kb7 11.Ke2 Kc8 12.Ke1 Kd8 13.Ke2 Ke7
>  µ  (-1.30)   Depth: 26/26   00:00:01  25kN
>1.Ke2 Kd7 2.Kd2 Kd6 3.Ke2 Ke7 4.Kd2 Ke6 5.Ke2 Kd6 6.Kd2 Ke7 7.Ke2 Kd8 8.Ke1 Kc7
>9.Ke2 Kb6 10.Kd2 Kb7 11.Ke2 Kc8 12.Ke1 Kd8 13.Ke2 Kc7 14.Kd2
>  µ  (-1.20)   Depth: 27/27   00:00:01  28kN
>1.Ke2 Kd7 2.Kd2 Kd6 3.Ke2 Ke7 4.Kd2 Ke6 5.Ke2 Kd6 6.Kd2 Ke7 7.Ke2 Kd8 8.Ke1 Kc7
>9.Ke2 Kb6 10.Kd2 Kb7 11.Kd1 Kc8 12.Ke2 Kb8 13.Kd2 Ka7 14.Ke2 Kb6
>  µ  (-1.20)   Depth: 28/28   00:00:01  29kN
>1.Ke2 Kd7 2.Kd2 Kd6 3.Ke2 Ke7 4.Kd2 Ke6 5.Ke2 Kd6 6.Kd2 Ke7 7.Ke2 Kd8 8.Ke1 Kc7
>9.Ke2 Kb6 10.Kd2 Kb7 11.Kd1 Kc8 12.Ke2 Kc7 13.Kd2 Kd7 14.Ke2 Kc6 15.Kd2
>  µ  (-1.30)   Depth: 29/29   00:00:01  34kN
>1.Ke2 Kd7 2.Kd2 Kd6 3.Ke2 Ke7 4.Kd2 Ke6 5.Ke2 Kd6 6.Kd2 Ke7 7.Ke2 Kd8 8.Ke1 Kc7
>9.Ke2 Kb6 10.Kd2 Kb7 11.Kd1 Kc8 12.Ke2 Kc7 13.Kd2 Kb6 14.Kd1 Kb7 15.Ke2 Kc6
>  µ  (-1.30)   Depth: 30/30   00:00:01  35kN
>1.Ke2 Kd7 2.Kd2 Kd6 3.Ke2 Ke7 4.Kd2 Ke6 5.Ke2 Kd6 6.Kd2 Ke7 7.Ke2 Kd8 8.Ke1 Kc7
>9.Ke2 Kb6 10.Kd2 Kb7 11.Kd1 Kc8 12.Ke2 Kc7 13.Kd2 Kd7 14.Ke2 Ke6 15.Kf2 Kd7
>16.Ke2
>  µ  (-1.30)   Depth: 31/31   00:00:01  37kN
>1.Ke2 Kd7 2.Kd2 Kd6 3.Ke2 Ke7 4.Kd2 Ke6 5.Ke2 Kd6 6.Kd2 Ke7 7.Ke2 Kd8 8.Ke1 Kc7
>9.Ke2 Kb6 10.Kd2 Kb7 11.Kd1 Kc8 12.Ke2 Kc7 13.Kd2 Kb6 14.Kd1 Kb7 15.Ke2 Kc8
>16.Kd2 Kd7
>  µ  (-1.30)   Depth: 32/32   00:00:01  38kN
>1.Ke2 Kd7 2.Kd2 Kd6 3.Ke2 Ke7 4.Kd2 Kd8 5.Ke2 Kc7 6.Kd2 Kb6 7.Kd1 Kb7 8.Ke2 Kc8
>9.Kd2 Kd7 10.Ke2
>  µ  (-1.30)   Depth: 33/33   00:00:01  42kN
>1.Ke2 Kd7 2.Kd2 Kd6 3.Ke2 Ke7 4.Kd2 Kd8 5.Ke2 Kc7 6.Kd2 Kb6 7.Kd1 Kb7 8.Ke2 Kc8
>9.Kd2 Kd7 10.Ke2 Ke6 11.Kf2 Kf7 12.Ke2 Kf8
>  µ  (-1.30)   Depth: 34/34   00:00:01  43kN
>1.Ke2 Kd7 2.Kd2 Kd6 3.Ke2 Ke7 4.Kd2 Kd8 5.Ke2 Kc7 6.Kd2 Kb6 7.Kd1 Kb7 8.Ke2 Kc8
>9.Kd2 Kd7 10.Ke2 Kc6 11.Kf2 Kc7 12.Ke2 Kb7 13.Kd2 Kc8 14.Ke2 Kb8 15.Kd2 Ka7
>16.Ke2 Ka6
>  µ  (-1.10)   Depth: 35/34   00:00:01  47kN
>1.Ke2 Kd7 2.Kd2 Kd6 3.Ke2 Ke7 4.Kd2 Kd8 5.Ke2 Kc7 6.Kd2 Kb6 7.Kd1 Kb7 8.Ke2 Kc6
>9.Kf2 Kd7 10.Ke2
>  µ  (-1.20)   Depth: 36/36   00:00:01  54kN
>1.Ke2 Kd7 2.Kd2 Kd6 3.Ke2 Ke7 4.Kd2 Kd8 5.Ke2 Kc7 6.Kd2 Kb6 7.Kd1 Kb7 8.Ke2 Kc6
>9.Kf2 Kd7 10.Ke2
>  µ  (-0.80)   Depth: 37/37   00:00:01  57kN
>1.Ke2 Kd7 2.Kd2 Kd6 3.Ke2 Ke7 4.Kd2 Kd8 5.Ke2 Kc7 6.Kd2 Kb6 7.Kd1 Kb7 8.Ke2 Kb8
>9.Kd2 Kc7 10.Kd1 Kb6 11.Kd2 Ka6 12.Kc1 Kb7 13.Kd2
>  µ  (-1.20)   Depth: 38/38   00:00:01  65kN
>1.Ke2 Kd7 2.Kd2 Kd6 3.Ke2 Ke7 4.Kd2 Kd8 5.Ke2 Kc7 6.Kd2 Kb6 7.Kd1 Kb7 8.Ke2 Kb8
>9.Kd2 Kc7 10.Kd1 Kb6 11.Kd2 Ka6 12.Kc1 Kb7 13.Kd2
>  µ  (-0.80)   Depth: 39/39   00:00:01  71kN
>1.Ke2 Kd7 2.Kd2 Kd6 3.Ke2 Ke7 4.Kd2 Ke6 5.Ke1 Kf6 6.Kd2 Ke7 7.Ke1 Ke6 8.Ke2 Kd6
>  µ  (-1.20)   Depth: 40/40   00:00:01  79kN
>1.Ke2 Kd7 2.Kd2 Kd6 3.Ke2 Ke7 4.Kd2 Ke6 5.Ke1 Kf6 6.Kd2 Ke7 7.Ke1 Ke6 8.Ke2 Kd6
>9.Kf1 Kc7 10.Ke2 Kc8 11.Kf1 Kd8 12.Ke2 Ke8
>  µ  (-1.20)   Depth: 41/41   00:00:01  80kN
>1.Ke2 Kd7 2.Kd2 Kd6 3.Ke2 Ke7 4.Kd2 Ke6 5.Ke1 Kf6 6.Kd2 Ke7 7.Ke1 Ke6 8.Ke2 Kf7
>9.Kd1 Kg6 10.Ke2 Kg7 11.Kd2 Kf8 12.Ke2 Ke8
>  µ  (-1.20)   Depth: 42/41   00:00:01  83kN
>1.Ke2 Kd7 2.Kd2 Kd6 3.Ke2 Ke7 4.Kd2 Ke6 5.Ke1 Kf7 6.Kd2 Ke7
>  µ  (-1.20)   Depth: 43/42   00:00:01  85kN
>1.Ke2 Kd7 2.Kd2 Kd6 3.Ke2 Ke7 4.Kd2 Ke6 5.Ke1 Kf7 6.Kd2 Ke7
>  µ  (-0.80)   Depth: 44/42   00:00:01  87kN
>1.Ke2 Kd7 2.Kd2 Kd6 3.Ke2 Ke7 4.Kd2 Ke6 5.Ke1 Kf7 6.Kd2 Ke7
>  ³  (-0.41)   Depth: 45/42   00:00:01  93kN
>1.Ke2 Kd7 2.Kd2 Kd6 3.Ke2 Ke7 4.Kd2 Ke6 5.Ke1 Kf7 6.Kd2 Ke7
>  =  (-0.02)   Depth: 46/46   00:00:01  98kN
>1.Ke2 Kd7 2.Kd2 Kd6 3.Ke2 Ke7 4.Kd2 Ke6 5.Ke1 Kf7 6.Kd2 Ke7 7.Ke1 Ke6 8.Ke2 Kd6
>9.Ke1 Kc7 10.Ke2 Kd6
>  =  (0.00)   Depth: 47/46   00:00:01  104kN
>1.Ke2 Kd7 2.Kd2 Kd6 3.Ke2 Ke7 4.Kd2 Ke6 5.Ke1 Kf7 6.Kd2 Ke7 7.Ke1 Ke6 8.Ke2 Kd6
>9.Ke1 Kc7 10.Ke2 Kd6
>  =  (0.00)   Depth: 48/48   00:00:01  105kN
>1.Ke2 Kd7 2.Kd2 Kd6 3.Ke2 Ke7 4.Kd2 Ke6 5.Ke1 Kf7 6.Kd2 Ke7 7.Ke1 Ke6 8.Ke2 Kd6
>9.Ke1 Kc7 10.Ke2 Kd6
>  =  (0.00)   Depth: 49/48   00:00:01  106kN
>1.Ke2 Kd7 2.Kd2 Kd6 3.Ke2 Ke7 4.Kd2 Ke6 5.Ke1 Kf7 6.Kd2 Ke7 7.Ke1 Ke6 8.Ke2 Kd6
>9.Ke1 Kc7 10.Ke2 Kd6
>  =  (0.00)   Depth: 50/48   00:00:01  107kN
>1.Ke2 Kd7 2.Kd2 Kd6 3.Ke2 Ke7 4.Kd2 Ke6 5.Ke1 Kf7 6.Kd2 Ke7 7.Ke1 Ke6 8.Ke2 Kd6
>9.Ke1 Kc7 10.Ke2 Kd6
>  =  (0.00)   Depth: 51/48   00:00:01  108kN
>1.Ke2 Kd7 2.Kd2 Kd6 3.Ke2 Ke7 4.Kd2 Ke6 5.Ke1 Kf7 6.Kd2 Ke7 7.Ke1 Ke6 8.Ke2 Kd6
>9.Ke1 Kc7 10.Ke2 Kd6
>  =  (0.00)   Depth: 52/48   00:00:01  109kN
>1.Ke2 Kd7 2.Kd2 Kd6 3.Ke2 Ke7 4.Kd2 Ke6 5.Ke1 Kf7 6.Kd2 Ke7 7.Ke1 Ke6 8.Ke2 Kd6
>9.Ke1 Kc7 10.Ke2 Kd6
>  =  (0.00)   Depth: 53/48   00:00:01  110kN
>1.Ke2 Kd7 2.Kd2 Kd6 3.Ke2 Ke7 4.Kd2 Ke6 5.Ke1 Kf7 6.Kd2 Ke7 7.Ke1 Ke6 8.Ke2 Kd6
>9.Ke1 Kc7 10.Ke2 Kd6
>  =  (0.00)   Depth: 54/48   00:00:01  110kN
>1.Ke2 Kd7 2.Kd2 Kd6 3.Ke2 Ke7 4.Kd2 Ke6 5.Ke1 Kf7 6.Kd2 Ke7 7.Ke1 Ke6 8.Ke2 Kd6
>9.Ke1 Kc7 10.Ke2 Kd6
>  =  (0.00)   Depth: 55/48   00:00:01  111kN
>1.Ke2 Kd7 2.Kd2 Kd6 3.Ke2 Ke7 4.Kd2 Ke6 5.Ke1 Kf7 6.Kd2 Ke7 7.Ke1 Ke6 8.Ke2 Kd6
>9.Ke1 Kc7 10.Ke2 Kd6
>  =  (0.00)   Depth: 56/48   00:00:01  112kN
>1.Ke2 Kd7 2.Kd2 Kd6 3.Ke2 Ke7 4.Kd2 Ke6 5.Ke1 Kf7 6.Kd2 Ke7 7.Ke1 Ke6 8.Ke2 Kd6
>9.Ke1 Kc7 10.Ke2 Kd6
>  =  (0.00)   Depth: 57/48   00:00:01  113kN
>1.Ke2 Kd7 2.Kd2 Kd6 3.Ke2 Ke7 4.Kd2 Ke6 5.Ke1 Kf7 6.Kd2 Ke7 7.Ke1 Ke6 8.Ke2 Kd6
>9.Ke1 Kc7 10.Ke2 Kd6
>  =  (0.00)   Depth: 58/48   00:00:01  114kN
>1.Ke2 Kd7 2.Kd2 Kd6 3.Ke2 Ke7 4.Kd2 Ke6 5.Ke1 Kf7 6.Kd2 Ke7 7.Ke1 Ke6 8.Ke2 Kd6
>9.Ke1 Kc7 10.Ke2 Kd6
>  =  (0.00)   Depth: 59/48   00:00:01  115kN
>1.Ke2 Kd7 2.Kd2 Kd6 3.Ke2 Ke7 4.Kd2 Ke6 5.Ke1 Kf7 6.Kd2 Ke7 7.Ke1 Ke6 8.Ke2 Kd6
>9.Ke1 Kc7 10.Ke2 Kd6
>  =  (0.00)   Depth: 60/48   00:00:01  116kN
>
>(David Tabibi, Tel-Aviv 17.01.2003)
>
>==============================================================================
>
>Analysis by Chess Tiger 14.0:
>
>1.Kd2 Ke7 2.Ke2 Kd6 3.Kd2 Kc6 4.Ke2 Kc7 5.Kd2 Kd6 6.Ke2 Ke7 7.Kd2 Kf6 8.Ke2 Kf7
>9.Kd2 Ke6
>  =  (-0.24)   Depth: 19   00:00:00  158kN
>1.Kd2 Ke7 2.Ke2 Kd6 3.Kd2 Kc6 4.Ke2 Kc7 5.Kd2 Kd6 6.Ke2 Kc6 7.Kd2 Kd7 8.Ke2 Ke7
>9.Kd2 Kf6 10.Ke2
>  =  (-0.24)   Depth: 19   00:00:00  195kN
>1.Kd2 Ke7 2.Ke2 Kd6 3.Kd2 Kc6 4.Ke2 Kc7 5.Kd2 Kd6 6.Ke2 Kc6 7.Kd2 Kd7 8.Ke2 Ke7
>9.Kd1 Kf6 10.Ke2 Ke6
>  =  (-0.24)   Depth: 20   00:00:01  552kN
>1.Kd2 Ke7 2.Ke2 Kd6 3.Kd2 Kc6 4.Ke2 Kc7 5.Kd2 Kd7 6.Ke2 Kc8 7.Kd2 Kd8 8.Ke2 Ke7
>9.Kd2 Kf7 10.Ke2 Kf6
>  =  (-0.24)   Depth: 21   00:00:02  921kN
>1.Kd2 Ke7 2.Ke2 Kd6 3.Kd2 Kc6 4.Ke2 Kc7 5.Kd2 Kd7 6.Ke2 Ke7 7.Kd2 Kf8 8.Ke2 Kf7
>9.Kd2 Kg7 10.Ke2 Kf6
>  =  (-0.24)   Depth: 22   00:00:04  1759kN
>1.Kd2 Ke7 2.Ke2 Kd6 3.Kd2 Kc6 4.Ke2 Kc7 5.Kd2 Kd7 6.Ke2 Ke7 7.Ke1 Kf7 8.Kd1 Kg6
>9.Kd2 Kh6 10.Ke2 Kg7
>  =  (-0.24)   Depth: 23   00:00:08  3424kN
>1.Kd2 Ke7 2.Ke2 Kd6 3.Kd2 Kc6 4.Ke2 Kc7 5.Kd2 Kd7 6.Ke2 Ke7 7.Kd1 Kf6 8.Ke2 Kg7
>9.Kd2 Kf8 10.Ke2 Kg8
>  =  (-0.24)   Depth: 24   00:00:17  6771kN
>1.Kd2 Ke7 2.Ke2 Kd6 3.Kd2 Kc6 4.Ke2 Kc7 5.Kd2 Kd7 6.Ke2 Ke7 7.Kd2 Ke8 8.Ke2 Kf7
>9.Kd2 Kg6 10.Ke2 Kh6
>  =  (-0.24)   Depth: 25   00:00:35  13930kN
>1.Kd2 Ke7 2.Ke2 Kd6 3.Kd2 Kc6 4.Ke2 Kc7 5.Kd2 Kd7 6.Ke2 Ke7 7.Kd1 Kf8 8.Kd2 Ke8
>9.Ke2 Kf7 10.Kd2 Kg6
>  =  (-0.24)   Depth: 26   00:01:09  26869kN
>1.Kd2 Ke7 2.Ke2 Kd6 3.Kd2 Kc6 4.Ke2 Kc7 5.Kd2 Kd7 6.Ke2 Ke7 7.Kd2 Kf7 8.Ke2 Kf8
>9.Kd2 Kg7 10.Ke2 Kh6
>  =  (-0.24)   Depth: 27   00:02:13  50982kN
>1.Kd2 Ke7 2.Ke2 Kd6 3.Kd2 Kc6 4.Ke2 Kc7 5.Kd2 Kb6 6.Ke2 Kc6 7.Kd2 Kd7 8.Ke2 Ke7
>9.Kd1 Kf7 10.Ke2 Kg6
>  =  (-0.24)   Depth: 28   00:03:37  84351kN
>
>(David Tabibi, Tel-Aviv 17.01.2003)



This page took 0 seconds to execute

Last modified: Thu, 15 Apr 21 08:11:13 -0700

Current Computer Chess Club Forums at Talkchess. This site by Sean Mintz.