Author: Dann Corbit
Date: 12:31:17 10/10/01
Go up one level in this thread
On October 10, 2001 at 09:23:21, Tim Foden wrote:
>On October 09, 2001 at 13:01:13, Uri Blass wrote:
>
>>[D]8/1P6/8/5k2/2K4p/7r/1r4p1/6R1 b - - 0 61
>>
>>This position is from the game Tao-Deep Junior7 in the last WMCCC
>>
>>Chest need some hours on p200 to see mate in 10(I used chest by the way that was
>>explained by paul some days ago
>>
>>see http://www.icdchess.com/forums/1/message.shtml?191857
>>
>>Solution:61...Rg3 62.Kd4 h3 63.Kd5 h2 64.b8Q Rxb8 65.Re1 Rd3+ 66.Kc4 h1Q 67.Re5+
>>Kxe5 68.Kxd3 Qd1+ 69.Kc3 Rb3+ 70.Kc4 Qc2#
>>
>>15961 seconds,292,407,791 nodes
>
>Green Light Chess (96MB Hash, 920MHz Duron, no tablebases) claims that Rg3 is a
>mate in 11 after 2 mins 30 secs, and that it is a mate in 10 after 4 mins 59
>secs. Finally it finds a different line for mate in 10 after 7 mins 56 secs.
>
> 14 2:30 +Mate11 118131k Rg3 2. Kc5 h3 3. b8=Q Rxb8 4. Rd1 g1=Q+ 5. Rxg1
> Rxg1 6. Kd4 h2 7. Kc4 h1=Q 8. Kd4 Rd1+ 9. Ke3
> Re8+ 10. Kf2 Rd2+ 11. Kg3 Rg8#
> 15 4:59 +Mate10 236044k Rg3 2. b8=Q Rxb8 3. Kc5 h3 4. Kd6 h2 5. Ra1 g1=Q 6.
> Ra5+ Kf6 7. Ra6 Rb6+ 8. Kc7 Rxa6 9. Kd7 Rg7+ 10.
> Kd8 Ra8#
> 16 7:56 +Mate10 388591k Rg3 2. Kc5 h3 3. Kc6 h2 4. Rd1 g1=Q 5. Rd5+ Ke4 6.
> Rb5 Rxb5 7. Kxb5 Qc1 8. Kb4 Qc2 9. b8=Q Rb3+ 10.
> Ka4 Qa2#
>
>Does chest agree with these as possible mates in 10?
>
>Cheers, Tim.
>
>Full analysis follows:
>
>>hash 96
> Hash table size set to: 96.0MB
>>anal
> Game stage: Endgame
> Current eval: 7.02
> Ply Time Score Nodes Principal Variation
> 5 0.07 +9.237 5257 Rg3 2. Kc5 Rxb7 3. Kc6 Rb4
> 6 0.07 +9.216 7400 Rg3 2. Kc5 Rxb7 3. Kc6 Re7 4. Kc5
> 6 0.07 1/28 Rhb3 >
> 6 0.52 +9.216 13237 Rg3 2. Kc5 Rxb7 3. Kc6 Re7 4. Kc5
> 7 0.52 ++ 16302 Rg3 (a=8.82 b=9.62 e=9.62)
> 7 0.57 +11.125 54126 Rg3 2. Kd5 h3 3. Re1 g1=Q 4. Rxg1 Rxg1
> 7 0.59 +11.125 61749 Rg3 2. Kd5 h3 3. Re1 g1=Q 4. Rxg1 Rxg1
> 8 0.65 -- 99828 Rg3 (a=10.73 b=11.53 e=10.73)
> 8 0.73 ++ 150736 Rg3 (a=-321.00 b=10.73 e=10.73)
> 8 0.85 +12.150 246506 Rg3 2. Kd5 h3 3. Re1 Rxb7 4. Kc6 h2 5. Kxb7 g1=Q
> 8 0.86 +12.150 246550 Rg3 2. Kd5 h3 3. Re1 Rxb7 4. Kc6 h2 5. Kxb7 g1=Q
> 9 0.95 -- 318508 Rg3 (a=11.75 b=12.55 e=11.75)
> 9 0.99 ++ 347299 Rg3 (a=-321.00 b=11.75 e=11.75)
> 9 1.29 +12.938 581774 Rg3 2. Ra1 Rxb7 3. Kc5 g1=Q+ 4. Rxg1 Rxg1 5. Kc6
> Rgb1 6. Kd5
> 9 1.30 +12.938 581818 Rg3 2. Ra1 Rxb7 3. Kc5 g1=Q+ 4. Rxg1 Rxg1 5. Kc6
> Rgb1 6. Kd5
> 10 1.48 -- 717414 Rg3 (a=12.54 b=13.34 e=12.54)
> 10 1.56 ++ 774881 Rg3 (a=-321.00 b=12.54 e=12.54)
> 10 2.43 +15.721 1453651 Rg3 2. Ra1 Rxb7 3. Kc5 g1=Q+ 4. Rxg1 Rxg1 5. Kc6 h3
> 6. Kxb7 h2 7. Kc6 h1=Q+
> 10 2.44 +15.721 1453695 Rg3 2. Ra1 Rxb7 3. Kc5 g1=Q+ 4. Rxg1 Rxg1 5. Kc6 h3
> 6. Kxb7 h2 7. Kc6 h1=Q+
> 11 2.75 -- 1713315 Rg3 (a=15.32 b=16.12 e=15.32)
> 11 2.92 ++ 1831695 Rg3 (a=-321.00 b=15.32 e=15.32)
> 11 3.92 +15.868 2607802 Rg3 2. Ra1 Rxb7 3. Kc5 h3 4. Rg1 Rgb3 5. Kd4 h2 6.
> Rxg2 R3b4+ 7. Ke3 h1=Q
> 11 3.93 +15.868 2607846 Rg3 2. Ra1 Rxb7 3. Kc5 h3 4. Rg1 Rgb3 5. Kd4 h2 6.
> Rxg2 R3b4+ 7. Ke3 h1=Q
> 12 5.08 ++ 3220008 Rg3 (a=15.47 b=16.27 e=16.27)
> 12 10.67 +18.823 7414915 Rg3 2. Kd5 h3 3. b8=Q Rxb8 4. Re1 g1=Q 5. Re5+ Kf4
> 6. Re4+ Kf3 7. Rc4 Rg5+ 8. Kd6 h2 9. Rc3+ Kg2
> 12 10.93 +18.823 7627692 Rg3 2. Kd5 h3 3. b8=Q Rxb8 4. Re1 g1=Q 5. Re5+ Kf4
> 6. Re4+ Kf3 7. Rc4 Rg5+ 8. Kd6 h2 9. Rc3+ Kg2
> 13 12.93 -- 9327296 Rg3 (a=18.42 b=19.22 e=18.42)
> 13 14.78 ++ 10595k Rg3 (a=-321.00 b=18.42 e=18.42)
> 13 45.94 +21.711 33205k Rg3 2. b8=Q Rxb8 3. Kc5 h3 4. Kc6 h2 5. Rxg2 Rxg2
> 6. Kd6 {ht}
> 13 45.94 +21.711 33205k Rg3 2. b8=Q Rxb8 3. Kc5 h3 4. Kc6 h2 5. Rxg2 Rxg2
> 6. Kd6 {ht}
> 14 49.80 -- 36528k Rg3 (a=21.31 b=22.11 e=21.31)
> 14 54.88 ++ 40167k Rg3 (a=-321.00 b=21.31 e=21.31)
> 14 2:30 +Mate11 118131k Rg3 2. Kc5 h3 3. b8=Q Rxb8 4. Rd1 g1=Q+ 5. Rxg1
> Rxg1 6. Kd4 h2 7. Kc4 h1=Q 8. Kd4 Rd1+ 9. Ke3
> Re8+ 10. Kf2 Rd2+ 11. Kg3 Rg8#
> 14 2:30 +Mate11 118131k Rg3 2. Kc5 h3 3. b8=Q Rxb8 4. Rd1 g1=Q+ 5. Rxg1
> Rxg1 6. Kd4 h2 7. Kc4 h1=Q 8. Kd4 Rd1+ 9. Ke3
> Re8+ 10. Kf2 Rd2+ 11. Kg3 Rg8#
> 15 2:33 -- 121106k Rg3 (a=320.98 b=321.00 e=320.98)
> 15 3:05 ++ 146309k Rg3 (a=-321.00 b=320.98 e=320.98)
> 15 4:59 +Mate10 236044k Rg3 2. b8=Q Rxb8 3. Kc5 h3 4. Kd6 h2 5. Ra1 g1=Q 6.
> Ra5+ Kf6 7. Ra6 Rb6+ 8. Kc7 Rxa6 9. Kd7 Rg7+ 10.
> Kd8 Ra8#
> 15 4:59 +Mate10 236044k Rg3 2. b8=Q Rxb8 3. Kc5 h3 4. Kd6 h2 5. Ra1 g1=Q 6.
> Ra5+ Kf6 7. Ra6 Rb6+ 8. Kc7 Rxa6 9. Kd7 Rg7+ 10.
> Kd8 Ra8#
> 16 5:13 -- 248451k Rg3 (a=320.98 b=321.00 e=320.98)
> 16 7:06 ++ 334637k Rg3 (a=-321.00 b=320.98 e=320.98)
> 16 7:56 +Mate10 388591k Rg3 2. Kc5 h3 3. Kc6 h2 4. Rd1 g1=Q 5. Rd5+ Ke4 6.
> Rb5 Rxb5 7. Kxb5 Qc1 8. Kb4 Qc2 9. b8=Q Rb3+ 10.
> Ka4 Qa2#
> 16 7:56 +Mate10 388591k Rg3 2. Kc5 h3 3. Kc6 h2 4. Rd1 g1=Q 5. Rd5+ Ke4 6.
> Rb5 Rxb5 7. Kxb5 Qc1 8. Kb4 Qc2 9. b8=Q Rb3+ 10.
> Ka4 Qa2#
> 17 9:12 -- 455126k Rg3 (a=320.98 b=321.00 e=320.98)
> 17 12:39 ++ 625746k Rg3 (a=-321.00 b=320.98 e=320.98)
> 17 12:49 0/28 Rg3 >exit
> local: t=12:51 nps=823134.8 n=634776023 (28.9% / 71.1%) fh=94.3%
> total: t=12:51 nps=823134.8 n=634776023 draws=786622
> trans: probes=157466652 hits=50262459 (31.92%) draft=39200352 (24.89%)
> tcuts: exact=26821 (0.02%) upper=27122632 (17.22%) lower=4408899 (2.80%)
> tstor: exact=21775 (0.03%) upper=66184235 (79.86%) lower=16671234 (20.12%)
> ext: check=88835236 recap=173709 ppush=1582950 1rep=6413384 thrt=0
> q-moves: gen=15390981 tested=11156920 made/un=4609839 max-dep=9
> max eval diff: part-1=4.798 part-2=1.402
>>
That's a truly astonishing result! Finding the closest mate faster than a
dedicated mate solver. It seems if GLC can work itself into an advantageous
position, it can really exploit it.
This page took 0 seconds to execute
Last modified: Thu, 15 Apr 21 08:11:13 -0700
Current Computer Chess Club Forums at Talkchess. This site by Sean Mintz.